0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      O-GlcNAcylation stimulates the deubiquitination activity of USP16 and regulates cell cycle progression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone 2A monoubiquitination (uH2A) underscores a key epigenetic regulation of gene expression. In this report, we show that the deubiquitinase for uH2A, ubiquitin-specific peptidase 16 (USP16), is modified by O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation involves the installation of the O-GlcNAc moiety to Ser/Thr residues. It crosstalks with Ser/Thr phosphorylation, affects protein–protein interaction, alters enzyme activity or protein folding, and changes protein subcellular localization. In our study, we first confirmed that USP16 is glycosylated on Thr203 and Ser214, as reported in a previous chemoenzymatic screen. We then discovered that mutation of the O-GlcNAcylation site Thr203, which is adjacent to deubiquitination-required Cys204, reduces the deubiquitination activity toward H2AK119ub in vitro and in cells, while mutation on Ser214 had the opposite effects. Using USP16 Ser552 phosphorylation-specific antibodies, we demonstrated that O-GlcNAcylation antagonizes cyclin-dependent kinase 1–mediated phosphorylation and promotes USP16 nuclear export. O-GlcNAcylation of USP16 is also required for deubiquitination of Polo-like kinase 1, a mitotic master kinase, and the subsequent chromosome segregation and cytokinesis. In summary, our study revealed that O-GlcNAcylation of USP16 at Thr203 and Ser214 coordinates deubiquitination of uH2A and Polo-like kinase 1, thus ensuring proper cell cycle progression.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease.

          O-GlcNAcylation is the addition of β-D-N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. O-linked N-acetylglucosamine (O-GlcNAc) was not discovered until the early 1980s and still remains difficult to detect and quantify. Nonetheless, O-GlcNAc is highly abundant and cycles on proteins with a timescale similar to protein phosphorylation. O-GlcNAc occurs in organisms ranging from some bacteria to protozoans and metazoans, including plants and nematodes up the evolutionary tree to man. O-GlcNAcylation is mostly on nuclear proteins, but it occurs in all intracellular compartments, including mitochondria. Recent glycomic analyses have shown that O-GlcNAcylation has surprisingly extensive cross talk with phosphorylation, where it serves as a nutrient/stress sensor to modulate signaling, transcription, and cytoskeletal functions. Abnormal amounts of O-GlcNAcylation underlie the etiology of insulin resistance and glucose toxicity in diabetes, and this type of modification plays a direct role in neurodegenerative disease. Many oncogenic proteins and tumor suppressor proteins are also regulated by O-GlcNAcylation. Current data justify extensive efforts toward a better understanding of this invisible, yet abundant, modification. As tools for the study of O-GlcNAc become more facile and available, exponential growth in this area of research will eventually take place.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation.

            O-GlcNAcylation, which is a nutrient-sensitive sugar modification, participates in the epigenetic regulation of gene expression. The enzymes involved in O-linked β-D-N-acetylglucosamine (O-GlcNAc) cycling - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) - target key transcriptional and epigenetic regulators including RNA polymerase II, histones, histone deacetylase complexes and members of the Polycomb and Trithorax groups. Thus, O-GlcNAc cycling may serve as a homeostatic mechanism linking nutrient availability to higher-order chromatin organization. In response to nutrient availability, O-GlcNAcylation is poised to influence X chromosome inactivation and genetic imprinting, as well as embryonic development. The wide range of physiological functions regulated by O-GlcNAc cycling suggests an unexplored nexus between epigenetic regulation in disease and nutrient availability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              O-GlcNAcylation regulates EZH2 protein stability and function.

              O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT-EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Biol Chem
                J Biol Chem
                The Journal of Biological Chemistry
                American Society for Biochemistry and Molecular Biology
                0021-9258
                1083-351X
                09 March 2024
                April 2024
                09 March 2024
                : 300
                : 4
                : 107150
                Affiliations
                [1 ]Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
                [2 ]Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
                [3 ]School of Life Sciences, Fudan University, Shanghai, China
                [4 ]Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
                [5 ]Department of Bioengineering, Virginia Commonwealth University, Richmond, Virginia, USA
                [6 ]Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
                [7 ]Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
                Author notes
                []For correspondence: Jing Li; Hengbin Wang; Haiying Wang wendy@ 123456bjmu.edu.cn wangh14@ 123456vcu.edu jing_li@ 123456mail.cnu.edu.cn
                [‡]

                These authors contributed equally to this work.

                Article
                S0021-9258(24)01645-4 107150
                10.1016/j.jbc.2024.107150
                10998217
                38462164
                6f0017a2-7dcb-427e-9ff6-d34a17b5ae89
                © 2024 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 October 2023
                : 14 February 2024
                Categories
                Research Article

                Biochemistry
                mitosis,histone h2a ubiquitination,o-glcnacylation,cytokinesis,plk1
                Biochemistry
                mitosis, histone h2a ubiquitination, o-glcnacylation, cytokinesis, plk1

                Comments

                Comment on this article