3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new analytical model for the response curve in megavoltage photon beams of the radiochromic EBT3 films measured with flatbed scanners

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The aim of this work is to study a new analytical model which describes the dose–response curve in megavoltage photon beams of the radiochromic EBT3 film measured with two commercially available flatbed scanners. This model takes into account the different increase of the number of two types of absorbents in the film with absorbed dose and it allows to identify parameters that depend on the flatbed scanner and the film model, and parameters that exclusively depend on the production lot. In addition, the new model is also compared with other models commonly used in the literature in terms of its performance in reducing systematic calibration uncertainties.

          Methods and materials

          The new analytical model consists on a linear combination of two saturating exponential functions for every color channel. The exponents modeling the growing of each kind of absorbent are film model and scanner model‐dependent, but they do not depend on the manufacturing lot. The proposed model considers the different dose kinetics of each absorbent and the apparent effective behavior of one of the absorbents in the red color channel of the scanner.

          The dose–response curve has been measured using EBT3 films, a percentage depth dose (PDD) calibration method in a dose range between 0.5 and 25 Gy, and two flatbed scanners: a Microtek 1000 XL and an EPSON 11000 XL. The PDD calibration method allows to obtain a dense collection of calibration points which have been fitted to the proposed response curve model and to other published models. The fit residuals were used to evaluate the performance of each model compared with the new analytical model.

          Results

          The model presented here does not introduce any systematic deviations up to the degree of accuracy reached in this work. The residual distribution is normally shaped and with lower variance than the distributions of the other published models. The model separates the parameters reflecting specific characteristics of the dosimetry system from the linear parameters which depend only on the production lot and are related to the relative abundance of each type of absorbent. The calibration uncertainty is reduced by a mean factor of two by using this model compared with the other studied models.

          Conclusions

          The proposed model reduces the calibration uncertainty related to systematic deviations introduced by the response curve. In addition, it separates parameters depending on the flatbed scanner and the film model from those depending on the production lot exclusively and therefore provides a better characterization of the dosimetry system and increases its reliability.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Multichannel film dosimetry with nonuniformity correction.

          A new method to evaluate radiochromic film dosimetry data scanned in multiple color channels is presented. This work was undertaken to demonstrate that the multichannel method is fundamentally superior to the traditional single channel method. The multichannel method allows for the separation and removal of the nondose-dependent portions of a film image leaving a residual image that is dependent only on absorbed dose. Radiochromic films were exposed to 10 x 10 cm radiation fields (Co-60 and 6 MV) at doses up to about 300 cGy. The films were scanned in red-blue-green (RGB) format on a flatbed color scanner and measured to build calibration tables relating the absorbed dose to the response of the film in each of the color channels. Film images were converted to dose maps using two methods. The first method used the response from a single color channel and the second method used the response from all three color channels. The multichannel method allows for the separation of the scanned signal into one part that is dose-dependent and another part that is dose-independent and enables the correction of a variety of disturbances in the digitized image including nonuniformities in the active coating on the radiochromic film as well as scanner related artifacts. The fundamental mathematics of the two methods is described and the dose maps calculated from film images using the two methods are compared and analyzed. The multichannel dosimetry method was shown to be an effective way to separate out non-dose-dependent abnormalities from radiochromic dosimetry film images. The process was shown to remove disturbances in the scanned images caused by nonhomogeneity of the radiochromic film and artifacts caused by the scanner and to improve the integrity of the dose information. Multichannel dosimetry also reduces random noise in the dose images and mitigates scanner-related artifacts such as lateral position dependence. In providing an ability to calculate dose maps from data in all the color channels the multichannel method provides the ability to examine the agreement between the color channels. Furthermore, when using calibration data to convert RGB film images to dose using the new method, poor correspondence between the dose calculations for the three color channels provides an important indication that the this new technique enables easy indication in case the dose and calibration films are curve mismatched. The method permit compensation for thickness nonuniformities in the film, increases the signal to noise level, mitigates the lateral dose-dependency of flatbed scanners effect of the calculated dose map and extends the evaluable dose range to 10 cGy-100 Gy. Multichannel dosimetry with radiochromic film like Gafchromic EBT2 is shown to have significant advantages over single channel dosimetry. It is recommended that the dosimetry protocols described be implemented when using this radiochromic film to ensure the best data integrity and dosimetric accuracy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan.

            Radiochromic film provides dose measurement at high spatial resolution, but often is not preferred for routine evaluation of patient-specific intensity modulated radiation therapy (IMRT) plans owing to ease-of-use factors. The authors have established an efficient protocol that combines calibration and measurement in a single scan and enables measurement results to be obtained in less than 30 min. This avoids complications due to postexposure changes in radiochromic film that delay the completion of a measurement, often for up to 24 h, in commonly used methods. In addition, the protocol addresses the accuracy and integrity of the measurement by eliminating environmental and interscan variability issues.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. American Association of Physicists in Medicine.

                Bookmark

                Author and article information

                Contributors
                cesar.rodriguez@salud.madrid.org
                Journal
                J Appl Clin Med Phys
                J Appl Clin Med Phys
                10.1002/(ISSN)1526-9914
                ACM2
                Journal of Applied Clinical Medical Physics
                John Wiley and Sons Inc. (Hoboken )
                1526-9914
                17 May 2022
                August 2022
                : 23
                : 8 ( doiID: 10.1002/acm2.v23.8 )
                : e13654
                Affiliations
                [ 1 ] Medical Physics Radiology Department Complutense University Madrid Spain
                [ 2 ] Medical Physics and Radiation Protection Service Fuenlabrada University Hospital Fuenlabrada Spain
                [ 3 ] Medical Physics and Radiation Protection Service Doce de Octubre University Hospital Madrid Spain
                Author notes
                [*] [* ] Correspondence

                César Rodríguez, Hospital Universitario de Fuenlabrada, Servicio de Radiofísica y Protección Radiológica, Camino del Molino 2, Fuenlabrada, N/A 28942, Spain.

                Email: cesar.rodriguez@ 123456salud.madrid.org

                Author information
                https://orcid.org/0000-0003-3323-7066
                Article
                ACM213654
                10.1002/acm2.13654
                9359044
                35580051
                6d225e02-6248-47d3-a7d7-c43c784c2399
                © 2022 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 April 2022
                : 17 January 2022
                : 25 April 2022
                Page count
                Figures: 9, Tables: 2, Pages: 13, Words: 6167
                Categories
                Radiation Oncology Physics
                Radiation Oncology Physics
                Custom metadata
                2.0
                August 2022
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.1.7 mode:remove_FC converted:08.08.2022

                calibration uncertainty,ebt3,film dosimetry,radiochromic film,response curve

                Comments

                Comment on this article