36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Creation of a functional unc-11/PICALM GFP knock-in by CRISPR

      brief-report
      1 , § , 1 , 1
      (Reviewer)
      microPublication Biology
      Caltech Library

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          unc-11 is the only C. elegans ortholog of mammalian PICALM/AP180, paralogs that play an important role in Clathrin-Mediated Endocytosis (CME) and the recycling of a subset of SNAREs, the vesicle-associated membrane proteins (VAMPs). In this publication we report the creation of a new unc-11 allele that is endogenously-tagged with GFP just upstream of the stop codon. Moreover, we demonstrate that the UNC-11::GFP fusion protein functions like wild type with an expression pattern similar to UNC-11 antibody staining described previously.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans

          Experimental manipulation of protein abundance in living cells or organisms is an essential strategy for investigation of biological regulatory mechanisms. Whereas powerful techniques for protein expression have been developed in Caenorhabditis elegans, existing tools for conditional disruption of protein function are far more limited. To address this, we have adapted the auxin-inducible degradation (AID) system discovered in plants to enable conditional protein depletion in C. elegans. We report that expression of a modified Arabidopsis TIR1 F-box protein mediates robust auxin-dependent depletion of degron-tagged targets. We document the effectiveness of this system for depletion of nuclear and cytoplasmic proteins in diverse somatic and germline tissues throughout development. Target proteins were depleted in as little as 20-30 min, and their expression could be re-established upon auxin removal. We have engineered strains expressing TIR1 under the control of various promoter and 3′ UTR sequences to drive tissue-specific or temporally regulated expression. The degron tag can be efficiently introduced by CRISPR/Cas9-based genome editing. We have harnessed this system to explore the roles of dynamically expressed nuclear hormone receptors in molting, and to analyze meiosis-specific roles for proteins required for germ line proliferation. Together, our results demonstrate that the AID system provides a powerful new tool for spatiotemporal regulation and analysis of protein function in a metazoan model organism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette.

            A central goal in the development of genome engineering technology is to reduce the time and labor required to produce custom genome modifications. Here we describe a new selection strategy for producing fluorescent protein (FP) knock-ins using CRISPR/Cas9-triggered homologous recombination. We have tested our approach in Caenorhabditis elegans. This approach has been designed to minimize hands-on labor at each step of the procedure. Central to our strategy is a newly developed self-excising cassette (SEC) for drug selection. SEC consists of three parts: a drug-resistance gene, a visible phenotypic marker, and an inducible Cre recombinase. SEC is flanked by LoxP sites and placed within a synthetic intron of a fluorescent protein tag, resulting in an FP-SEC module that can be inserted into any C. elegans gene. Upon heat shock, SEC excises itself from the genome, leaving no exogenous sequences outside the fluorescent protein tag. With our approach, one can generate knock-in alleles in any genetic background, with no PCR screening required and without the need for a second injection step to remove the selectable marker. Moreover, this strategy makes it possible to produce a fluorescent protein fusion, a transcriptional reporter and a strong loss-of-function allele for any gene of interest in a single injection step.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CALM Regulates Clathrin-Coated Vesicle Size and Maturation by Directly Sensing and Driving Membrane Curvature

              Summary The size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of “open” clathrin-coated pits (CCPs) to “necked”/“closed” CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake.
                Bookmark

                Author and article information

                Journal
                MicroPubl Biol
                MicroPubl Biol
                microPublication Biology
                Caltech Library
                2578-9430
                28 April 2021
                2021
                : 2021
                : 10.17912/micropub.biology.000389
                Affiliations
                [1 ] California State University, East Bay
                Author notes
                [§ ] Correspondence to: Maria Gallegos ( maria.gallegos@ 123456csueastbay.edu )

                MG: Data curation, Conceptualization, Project administration, Supervision, Writing - original draft

                AH: Data curation

                DP: Data curation

                Article
                10.17912/micropub.biology.000389
                8082290
                6c575d22-0626-48f5-a4cb-2c5c37d16533
                Copyright: © 2021 by the authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 07 April 2021
                : 19 April 2021
                : 19 April 2021
                Categories
                Materials and Reagents
                Expression Data

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content139

                Most referenced authors146