5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Steps towards Smarter Solutions in Optometry and Ophthalmology—Inter-Device Agreement of Subjective Methods to Assess the Refractive Errors of the Eye

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: To investigate the inter-device agreement and mean differences between a newly developed digital phoropter and the two standard methods (trial frame and manual phoropter). Methods: Refractive errors of two groups of participants were measured by two examiners (examiner 1 (E1): 36 subjects; examiner 2 (E2): 38 subjects). Refractive errors were assessed using a trial frame, a manual phoropter and a digital phoropter. Inter-device agreement regarding the measurement of refractive errors was analyzed for differences in terms of the power vector components (spherical equivalent (SE) and the cylindrical power vector components J0 and J45) between the used methods. Intraclass correlation coefficients (ICC’s) were calculated to evaluate correlations between the used methods. Results: Analyzing the variances between the three methods for SE, J0 and J45 using a two-way ANOVA showed no significant differences between the methods (SE: p = 0.13, J0: p = 0.58 and J45: p = 0.96) for examiner 1 and for examiner 2 (SE: p = 0.88, J0: p = 0.95 and J45: p = 1). Mean differences and ±95% Limits of Agreement for each pair of inter-device agreement regarding the SE for both examiners were as follows: Trial frame vs. digital phoropter: +0.10 D ± 0.56 D (E1) and +0.19 D ± 0.60 D (E2), manual phoropter vs. trial frame: −0.04 D ± 0.59 D (E1) and −0.12 D ± 0.49 D (E2) and for manual vs. digital phoropter: +0.06 D ± 0.65 D (E1) and +0.08 D ± 0.45 D (E2). ICCs revealed high correlations between all methods for both examiner ( p < 0.001). The time to assess the subjective refraction was significantly smaller with the digital phoropter (examiner 1: p < 0.001; examiner 2: p < 0.001). Conclusion: “All used subjective methods show a good agreement between each other terms of ICC (>0.9). Assessing refractive errors using different subjective methods, results in similar mean differences and 95% limits of agreement, when compared to those reported in studies comparing subjective refraction non-cylcoplegic retinoscopy or autorefraction”.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error.

            The description of sphero-cylinder lenses is approached from the viewpoint of Fourier analysis of the power profile. It is shown that the familiar sine-squared law leads naturally to a Fourier series representation with exactly three Fourier coefficients, representing the natural parameters of a thin lens. The constant term corresponds to the mean spherical equivalent (MSE) power, whereas the amplitude and phase of the harmonic correspond to the power and axis of a Jackson cross-cylinder (JCC) lens, respectively. Expressing the Fourier series in rectangular form leads to the representation of an arbitrary sphero-cylinder lens as the sum of a spherical lens and two cross-cylinders, one at axis 0 degree and the other at axis 45 degrees. The power of these three component lenses may be interpreted as (x,y,z) coordinates of a vector representation of the power profile. Advantages of this power vector representation of a sphero-cylinder lens for numerical and graphical analysis of optometric data are described for problems involving lens combinations, comparison of different lenses, and the statistical distribution of refractive errors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence of refractive error in the United States, 1999-2004.

              To describe the prevalence of refractive error in the United States. The 1999-2004 National Health and Nutrition Examination Survey (NHANES) used an autorefractor to obtain refractive error data on a nationally representative sample of the US noninstitutionalized, civilian population 12 years and older. Using data from the eye with a greater absolute spherical equivalent (SphEq) value, we defined clinically important refractive error as follows: hyperopia, SphEq value of 3.0 diopters (D) or greater; myopia, SphEq value of -1.0 D or less; and astigmatism, cylinder of 1.0 D or greater in either eye. Of 14,213 participants 20 years or older who completed the NHANES, refractive error data were obtained for 12,010 (84.5%). The age-standardized prevalences of hyperopia, myopia, and astigmatism were 3.6% (95% confidence interval [CI], 3.2%-4.0%), 33.1% (95% CI, 31.5%-34.7%), and 36.2% (95% CI, 34.9%-37.5%), respectively. Myopia was more prevalent in women (39.9%) than in men (32.6%) (P < .001) among 20- to 39-year-old participants. Persons 60 years or older were less likely to have myopia and more likely to have hyperopia and/or astigmatism than younger persons. Myopia was more common in non-Hispanic whites (35.2%) than in non-Hispanic blacks (28.6%) or Mexican Americans (25.1%) (P < .001 for both). Estimates based on the 1999-2004 NHANES vision examination data indicate that clinically important refractive error affects half of the US population 20 years or older.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Healthcare (Basel)
                Healthcare (Basel)
                healthcare
                Healthcare
                MDPI
                2227-9032
                13 July 2016
                September 2016
                : 4
                : 3
                : 41
                Affiliations
                [1 ]Institute for Ophthalmic Research, University of Tuebingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany; alexander.leube@ 123456uni-tuebingen.de (A.L.); siegfried.wahl@ 123456uni.tuebingen.de (S.W.)
                [2 ]Carl Zeiss Vision International GmbH, 73430 Aalen, Germany
                Author notes
                [* ]Correspondence: arne.ohlendorf@ 123456zeiss.com ; Tel.: +49-7071-2984509
                Article
                healthcare-04-00041
                10.3390/healthcare4030041
                5041042
                27417629
                6c0852e0-d992-4126-a388-69b86886de27
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 February 2016
                : 06 July 2016
                Categories
                Article

                public health,optometry,subjective refraction,refractive errors,agreement

                Comments

                Comment on this article