7
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      COVID-19, Hyperglycemia, and New-Onset Diabetes

      discussion

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Certain chronic comorbidities, including diabetes, are highly prevalent in people with coronavirus disease 2019 (COVID-19) and are associated with an increased risk of severe COVID-19 and mortality. Mild glucose elevations are also common in COVID-19 patients and associated with worse outcomes even in people without diabetes. Several studies have recently reported new-onset diabetes associated with COVID-19. The phenomenon of new-onset diabetes following admission to the hospital has been observed previously with other viral infections and acute illnesses. The precise mechanisms for new-onset diabetes in people with COVID-19 are not known, but it is likely that a number of complex interrelated processes are involved, including previously undiagnosed diabetes, stress hyperglycemia, steroid-induced hyperglycemia, and direct or indirect effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the β-cell. There is an urgent need for research to help guide management pathways for these patients. In view of increased mortality in people with new-onset diabetes, hospital protocols should include efforts to recognize and manage acute hyperglycemia, including diabetic ketoacidosis, in people admitted to the hospital. Whether new-onset diabetes is likely to remain permanent is not known, as the long-term follow-up of these patients is limited. Prospective studies of metabolism in the setting of postacute COVID-19 will be required to understand the etiology, prognosis, and treatment opportunities.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          6-month consequences of COVID-19 in patients discharged from hospital: a cohort study

          Background The long-term health consequences of COVID-19 remain largely unclear. The aim of this study was to describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity. Methods We did an ambidirectional cohort study of patients with confirmed COVID-19 who had been discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7, 2020, and May 29, 2020. Patients who died before follow-up, patients for whom follow-up would be difficult because of psychotic disorders, dementia, or re-admission to hospital, those who were unable to move freely due to concomitant osteoarthropathy or immobile before or after discharge due to diseases such as stroke or pulmonary embolism, those who declined to participate, those who could not be contacted, and those living outside of Wuhan or in nursing or welfare homes were all excluded. All patients were interviewed with a series of questionnaires for evaluation of symptoms and health-related quality of life, underwent physical examinations and a 6-min walking test, and received blood tests. A stratified sampling procedure was used to sample patients according to their highest seven-category scale during their hospital stay as 3, 4, and 5–6, to receive pulmonary function test, high resolution CT of the chest, and ultrasonography. Enrolled patients who had participated in the Lopinavir Trial for Suppression of SARS-CoV-2 in China received severe acute respiratory syndrome coronavirus 2 antibody tests. Multivariable adjusted linear or logistic regression models were used to evaluate the association between disease severity and long-term health consequences. Findings In total, 1733 of 2469 discharged patients with COVID-19 were enrolled after 736 were excluded. Patients had a median age of 57·0 (IQR 47·0–65·0) years and 897 (52%) were men. The follow-up study was done from June 16, to Sept 3, 2020, and the median follow-up time after symptom onset was 186·0 (175·0–199·0) days. Fatigue or muscle weakness (63%, 1038 of 1655) and sleep difficulties (26%, 437 of 1655) were the most common symptoms. Anxiety or depression was reported among 23% (367 of 1617) of patients. The proportions of median 6-min walking distance less than the lower limit of the normal range were 24% for those at severity scale 3, 22% for severity scale 4, and 29% for severity scale 5–6. The corresponding proportions of patients with diffusion impairment were 22% for severity scale 3, 29% for scale 4, and 56% for scale 5–6, and median CT scores were 3·0 (IQR 2·0–5·0) for severity scale 3, 4·0 (3·0–5·0) for scale 4, and 5·0 (4·0–6·0) for scale 5–6. After multivariable adjustment, patients showed an odds ratio (OR) 1·61 (95% CI 0·80–3·25) for scale 4 versus scale 3 and 4·60 (1·85–11·48) for scale 5–6 versus scale 3 for diffusion impairment; OR 0·88 (0·66–1·17) for scale 4 versus scale 3 and OR 1·77 (1·05–2·97) for scale 5–6 versus scale 3 for anxiety or depression, and OR 0·74 (0·58–0·96) for scale 4 versus scale 3 and 2·69 (1·46–4·96) for scale 5–6 versus scale 3 for fatigue or muscle weakness. Of 94 patients with blood antibodies tested at follow-up, the seropositivity (96·2% vs 58·5%) and median titres (19·0 vs 10·0) of the neutralising antibodies were significantly lower compared with at the acute phase. 107 of 822 participants without acute kidney injury and with estimated glomerular filtration rate (eGFR) 90 mL/min per 1·73 m2 or more at acute phase had eGFR less than 90 mL/min per 1·73 m2 at follow-up. Interpretation At 6 months after acute infection, COVID-19 survivors were mainly troubled with fatigue or muscle weakness, sleep difficulties, and anxiety or depression. Patients who were more severely ill during their hospital stay had more severe impaired pulmonary diffusion capacities and abnormal chest imaging manifestations, and are the main target population for intervention of long-term recovery. Funding National Natural Science Foundation of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, National Key Research and Development Program of China, Major Projects of National Science and Technology on New Drug Creation and Development of Pulmonary Tuberculosis, and Peking Union Medical College Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020

            (2019)
            The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee (https://doi.org/10.2337/dc20-SPPC), a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc20-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-dimensional characterization of post-acute sequalae of COVID-19

              The acute clinical manifestations of COVID-19 have been well characterized1,2, but the post-acute sequelae of this disease have not been comprehensively described. Here we use the national healthcare databases of the US Department of Veterans Affairs to systematically and comprehensively identify 6-month incident sequelae-including diagnoses, medication use and laboratory abnormalities-in patients with COVID-19 who survived for at least 30 days after diagnosis. We show that beyond the first 30 days of illness, people with COVID-19 exhibit a higher risk of death and use of health resources. Our high-dimensional approach identifies incident sequelae in the respiratory system, as well as several other sequelae that include nervous system and neurocognitive disorders, mental health disorders, metabolic disorders, cardiovascular disorders, gastrointestinal disorders, malaise, fatigue, musculoskeletal pain and anaemia. We show increased incident use of several therapeutic agents-including pain medications (opioids and non-opioids) as well as antidepressant, anxiolytic, antihypertensive and oral hypoglycaemic agents-as well as evidence of laboratory abnormalities in several organ systems. Our analysis of an array of prespecified outcomes reveals a risk gradient that increases according to the severity of the acute COVID-19 infection (that is, whether patients were not hospitalized, hospitalized or admitted to intensive care). Our findings show that a substantial burden of health loss that spans pulmonary and several extrapulmonary organ systems is experienced by patients who survive after the acute phase of COVID-19. These results will help to inform health system planning and the development of multidisciplinary care strategies to reduce chronic health loss among individuals with COVID-19.
                Bookmark

                Author and article information

                Journal
                Diabetes Care
                Diabetes Care
                diacare
                Diabetes Care
                Diabetes Care
                American Diabetes Association
                0149-5992
                1935-5548
                December 2021
                08 October 2021
                08 October 2021
                : 44
                : 12
                : 2645-2655
                Affiliations
                [1] 1Diabetes Research Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, U.K.
                [2] 2Section of Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
                [3] 3Laboratory for Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
                [4] 4VA Puget Sound Health Care System and University of Washington, Seattle, WA
                [5] 5Harvard Medical School, Boston, MA
                [6] 6American Diabetes Association, Arlington, VA
                [7] 7Division of Endocrinology and Metabolism, University of North Carolina School of Medicine, Chapel Hill, NC
                Author notes
                Corresponding author: Kamlesh Khunti, kk22@ 123456leicester.ac.uk
                Author information
                https://orcid.org/0000-0003-2343-7099
                Article
                211318
                10.2337/dc21-1318
                8669536
                34625431
                6b921ce4-ac00-43fe-bfcc-e39b261e7eef
                © 2021 by the American Diabetes Association

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

                History
                : 24 June 2021
                : 03 September 2021
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 69, Pages: 11
                Categories
                1038
                Perspectives in Care

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article