3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Worldwide people tend to spend approximately 90% of their time in different indoor environments. Along with the penetration of outside air pollutants, contaminants are produced in indoor environments due to different activities such as heating, cooling, cooking, and emissions from building products and the materials used. As people spend most of their lives in indoor environments, this has a significant influence on human health and productivity. Despite the two decades of indoor air quality (IAQ) research from different perspectives, there is still a lack of comprehensive evaluation of peer-reviewed IAQ studies that specifically covers the relationship between the internal characteristics of different types of building environments with IAQ to help understand the progress and limitations of IAQ research worldwide. Therefore, this review of scientific studies presents a broad spectrum of pollutants identified in both residential and commercial indoor environments, highlighting the trends and gaps in IAQ research. Moreover, analysis of literature data enabled us to assess the different IAQs in buildings located in different countries/regions, thus reflecting the current global scientific understanding of IAQ. This review has the potential to benefit building professionals by establishing indoor air regulations that account for all indoor contaminant sources to create healthy and sustainable building environments.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants.

          Because human activities impact the timing, location, and degree of pollutant exposure, they play a key role in explaining exposure variation. This fact has motivated the collection of activity pattern data for their specific use in exposure assessments. The largest of these recent efforts is the National Human Activity Pattern Survey (NHAPS), a 2-year probability-based telephone survey (n=9386) of exposure-related human activities in the United States (U.S.) sponsored by the U.S. Environmental Protection Agency (EPA). The primary purpose of NHAPS was to provide comprehensive and current exposure information over broad geographical and temporal scales, particularly for use in probabilistic population exposure models. NHAPS was conducted on a virtually daily basis from late September 1992 through September 1994 by the University of Maryland's Survey Research Center using a computer-assisted telephone interview instrument (CATI) to collect 24-h retrospective diaries and answers to a number of personal and exposure-related questions from each respondent. The resulting diary records contain beginning and ending times for each distinct combination of location and activity occurring on the diary day (i.e., each microenvironment). Between 340 and 1713 respondents of all ages were interviewed in each of the 10 EPA regions across the 48 contiguous states. Interviews were completed in 63% of the households contacted. NHAPS respondents reported spending an average of 87% of their time in enclosed buildings and about 6% of their time in enclosed vehicles. These proportions are fairly constant across the various regions of the U.S. and Canada and for the California population between the late 1980s, when the California Air Resources Board (CARB) sponsored a state-wide activity pattern study, and the mid-1990s, when NHAPS was conducted. However, the number of people exposed to environmental tobacco smoke (ETS) in California seems to have decreased over the same time period, where exposure is determined by the reported time spent with a smoker. In both California and the entire nation, the most time spent exposed to ETS was reported to take place in residential locations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust.

            Chemicals identified as endocrine-disrupting compounds (EDCs) have widespread consumer uses, yet little is known about indoor exposure. We sampled indoor air and dust in 120 homes, analyzing for 89 organic chemicals identified as EDCs. Fifty-two compounds were detected in air and 66 were detected in dust. These are the first reported measures in residential environments for over 30 of the compounds, including several detected at the highest concentrations. The number of compounds detected per home ranged from 13 to 28 in air and from 6 to 42 in dust. The most abundant compounds in air included phthalates (plasticizers, emulsifiers), o-phenylphenol (disinfectant), 4-nonylphenol (detergent metabolite), and 4-tert-butylphenol (adhesive) with typical concentrations in the range of 50-1500 ng/m3. The penta- and tetrabrominated diphenyl ethers (flame retardants) were frequently detected in dust, and 2,3-dibromo-1-propanol, the carcinogenic intermediate of a flame retardant banned in 1977, was detected in air and dust. Twenty-three pesticides were detected in air and 27 were detected in dust, the most abundant being permethrins and the synergist piperonyl butoxide. The banned pesticides heptachlor, chlordane, methoxychlor, and DDT were also frequently detected, suggesting limited indoor degradation. Detected concentrations exceeded government health-based guidelines for 15 compounds, but no guidelines are available for 28 compounds, and existing guidelines do not consider endocrine effects. This study provides a basis for prioritizing toxicology and exposure research for individual EDCs and mixtures and provides new tools for exposure assessment in health studies.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Indoor air quality and health

              A.P. Jones (1999)
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                22 March 2021
                March 2021
                : 18
                : 6
                : 3276
                Affiliations
                Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar; mmannan@ 123456hbku.edu.qa
                Author notes
                [* ]Correspondence: salghamdi@ 123456hbku.edu.qa ; Tel.: +974-4454-2833; Fax: +974-4454-0281
                Author information
                https://orcid.org/0000-0002-7416-5153
                Article
                ijerph-18-03276
                10.3390/ijerph18063276
                8004912
                33810001
                6a27ef62-e91d-466d-8cf1-321e490fbb0d
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 February 2021
                : 09 March 2021
                Categories
                Review

                Public health
                indoor air pollution,residential indoor pollutants,office indoor pollutants,school indoor pollutants,influencing factors indoor

                Comments

                Comment on this article