11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d4321303e340">Declining oxygen contents in today’s oceans highlight the need to better understand ancient, natural marine deoxygenation and associated extinctions. In the Early Jurassic, the Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma) is associated with significant perturbations to the Earth system, historically defined by carbon isotopes. We reconstructed global oceanic (de)oxygenation using thallium isotopes from two ocean basins that suggest a stepwise decline of oxygen that initiated before and extended well after the classically defined T-OAE interval. This initial deoxygenation occurs with the start of massive volcanism and marine extinctions, while a later shift corresponds to the traditional T-OAE. This emphasizes the need for more nuanced records of ancient environmental and biogeochemical feedbacks that lead to and maintain widespread marine anoxia. </p><p class="first" id="d4321303e343">For this study, we generated thallium (Tl) isotope records from two anoxic basins to track the earliest changes in global bottom water oxygen contents over the Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma) of the Early Jurassic. The T-OAE, like other Mesozoic OAEs, has been interpreted as an expansion of marine oxygen depletion based on indirect methods such as organic-rich facies, carbon isotope excursions, and biological turnover. Our Tl isotope data, however, reveal explicit evidence for earlier global marine deoxygenation of ocean water, some 600 ka before the classically defined T-OAE. This antecedent deoxygenation occurs at the Pliensbachian/Toarcian boundary and is coeval with the onset of initial large igneous province (LIP) volcanism and the initiation of a marine mass extinction. Thallium isotopes are also perturbed during the T-OAE interval, as defined by carbon isotopes, reflecting a second deoxygenation event that coincides with the acme of elevated marine mass extinctions and the main phase of LIP volcanism. This suggests that the duration of widespread anoxic bottom waters was at least 1 million years in duration and spanned early to middle Toarcian time. Thus, the Tl data reveal a more nuanced record of marine oxygen depletion and its links to biological change during a period of climatic warming in Earth’s past and highlight the role of oxygen depletion on past biological evolution. </p>

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Decline in global oceanic oxygen content during the past five decades

          Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (1012 mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (1015 mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Geochemistry of oceanic anoxic events

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Interpreting carbon-isotope excursions: carbonates and organic matter

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                June 11 2018
                : 201803478
                Article
                10.1073/pnas.1803478115
                6042096
                29891692
                6a145fdb-c234-48cf-a5db-8f4c7bba85d8
                © 2018

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article