21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimal Multiparameter Metrology: The Quantum Compass Solution

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study optimal quantum sensing of multiple physical parameters using repeated measurements. In this scenario, the Fisher information framework sets the fundamental limits on sensing performance, yet the optimal states and corresponding measurements that attain these limits remain to be discovered. To address this, we extend the Fisher information approach with a second optimality requirement for a sensor to provide unambiguous estimation of unknown parameters. We propose a systematic method integrating Fisher information and Bayesian approaches to quantum metrology to identify the combination of input states and measurements that satisfies both optimality criteria. Specifically, we frame the optimal sensing problem as an optimization of an asymptotic Bayesian cost function that can be efficiently solved numerically and, in many cases, analytically. We refer to the resulting optimal sensor as a `quantum compass' solution, which serves as a direct multiparameter counterpart to the Greenberger-Horne-Zeilinger state-based interferometer, renowned for achieving the Heisenberg limit in single-parameter metrology. We provide exact quantum compass solutions for paradigmatic multiparameter problem of sensing two and three parameters using an SU(2) sensor. Our metrological cost function opens avenues for quantum variational techniques to design low-depth quantum circuits approaching the optimal sensing performance in the many-repetition scenario. We demonstrate this by constructing simple quantum circuits that achieve the Heisenberg limit for vector field and 3D rotations estimation using a limited set of gates available on a trapped-ion platform. Our work introduces and optimizes sensors for a practical notion of optimality, keeping in mind the ultimate goal of quantum sensors to precisely estimate unknown parameters.

          Related collections

          Author and article information

          Journal
          22 April 2024
          Article
          2404.14194
          69ada7a1-3060-49ba-ab8b-581e715c1adf

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          quant-ph

          Quantum physics & Field theory
          Quantum physics & Field theory

          Comments

          Comment on this article