67
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pulmonary fibrosis secondary to COVID-19: a call to arms?

      discussion

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As of May 6, 2020, nearly 3·7 million people have been infected and around 260 000 people have died from coronavirus disease 2019 (COVID-19) worldwide. 1 Almost all COVID-19-related serious consequences feature pneumonia. 2 In the first large series of hospitalised patients (n=138) with COVID-19 in Wuhan, China, chest CT showed bilateral ground glass opacities with or without consolidation and with lower lobe predilection in all patients. 3 In this series, 36 (26%) patients required intensive care, of whom 22 (61%) developed acute respiratory distress syndrome (ARDS). 3 The mechanisms through which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes lung damage are only partly known, but plausible contributors include a cytokine release syndrome triggered by the viral antigen, drug-induced pulmonary toxicity, and high airway pressure and hyperoxia-induced acute lung injury secondary to mechanical ventilation. To date, about 1·2 million people worldwide have recovered from COVID-19, but there remains concern that some organs, including the lungs, might have long-term impairment following infection (figure ). No post-discharge imaging or functional data are available for patients with COVID-19. Figure Lung CT of a patient with coronavirus disease 2019 (A) Images of peripheral mild ground glass opacities in the left lower lobe (arrow). (B) Three weeks later, at the same lung zones, the disease has rapidly progressed and fibrotic changes are now evident (arrows). Other strains of the coronavirus family, namely severe acute respiratory syndrome coronavirus (SARS-CoV; known as SARS) and Middle East respiratory syndrome coronavirus (MERS-CoV; known as MERS), are genetically similar to SARS-CoV-2 and cause pulmonary syndromes similar to COVID-19. At the end of the SARS epidemic in June, 2003, 8422 individuals were affected and 916 died; whereas MERS, which was first identified in April, 2012, has infected 2519 individuals worldwide to date, including 866 deaths. 4 The predominant CT abnormalities in patients with SARS included rapidly progressive ground glass opacities sometimes with consolidation. Reticular changes were evident approximately 2 weeks after symptom onset and persisted in half of patients beyond 4 weeks. 5 However, a 15-year follow-up study of 71 patients with SARS showed that interstitial abnormalities and functional decline recovered over the first 2 years following infection and then remained stable. At 15 years, 4·6% (SD 6·4%) of the lungs showed interstitial abnormality in patients who had been infected with SARS. 6 In patients with MERS, typical CT abnormalities included bilateral ground glass opacities, predominantly in the basal and peripheral lung zones. Follow-up outcomes are less well described in patients with MERS. In a study of 36 patients who had recovered from MERS, chest x-rays taken a median of 43 (range 32–320) days after hospital discharge showed abnormalities described as lung fibrosis in about a third of the patients. 7 Longer-term follow-up of patients who recovered from MERS has not been reported. Pulmonary fibrosis can develop either following chronic inflammation or as a primary, genetically influenced, and age-related fibroproliferative process, as in idiopathic pulmonary fibrosis (IPF). Pulmonary fibrosis is a recognised sequelae of ARDS. However, most follow-up studies—which have included both physiological measures and chest CT—have shown that persistent radiographic abnormalities after ARDS are of little clinical relevance and have become less common in the era of protective lung ventilation. 8 Available data indicate that about 40% of patients with COVID-19 develop ARDS, and 20% of ARDS cases are severe. 9 Of note, the average age of patients hospitalised with severe COVID-19 appears to be older than that seen with MERS or SARS, which is perhaps a consequence of wider community spread. In inflammatory lung disorders, such as those associated with autoimmune disease, advancing age is a risk factor for the development of pulmonary fibrosis. Given these observations, the burden of pulmonary fibrosis after COVID-19 recovery could be substantial. Progressive, fibrotic irreversible interstitial lung disease, which is characterised by declining lung function, increasing extent of fibrosis on CT, worsening symptoms and quality of life, and early mortality, 10 arises, with varying degrees of frequency, in the context of a number of conditions including IPF, hypersensitivity pneumonitis, autoimmune disease, and drug-induced interstitial lung disease. Although the virus is eradicated in patients who have recovered from COVID-19, the removal of the cause of lung damage does not, in itself, preclude the development of progressive, fibrotic irreversible interstitial lung disease. Furthermore, even a relatively small degree of residual but non-progressive fibrosis could result in considerable morbidity and mortality in an older population of patients who had COVID-19, many of whom will have pre-existing pulmonary conditions. At present, the long-term pulmonary consequences of COVID-19 remains speculative and should not be assumed without appropriate prospective study. Nonetheless, given the huge numbers of individuals affected by COVID-19, even rare complications will have major health effects at the population level. It is important that plans are made now to rapidly identify whether the development of pulmonary fibrosis occurs in the survivor population. By doing this, we can hope to deliver appropriate clinical care and urgently design interventional trials to prevent a second wave of late mortality associated with this devastating pandemic.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Characteristics of Coronavirus Disease 2019 in China

          Abstract Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. Methods We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. Results The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. Conclusions During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China

            In December 2019, novel coronavirus (2019-nCoV)-infected pneumonia (NCIP) occurred in Wuhan, China. The number of cases has increased rapidly but information on the clinical characteristics of affected patients is limited.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China

              Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that was first reported in Wuhan, China, and has subsequently spread worldwide. Risk factors for the clinical outcomes of COVID-19 pneumonia have not yet been well delineated.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lancet Respir Med
                Lancet Respir Med
                The Lancet. Respiratory Medicine
                Elsevier Ltd.
                2213-2600
                2213-2619
                15 May 2020
                15 May 2020
                Affiliations
                [a ]Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Padova 35128, Italy
                [b ]Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
                [c ]Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
                [d ]Radiology Unit, Azienda Ospedaliera Universitaria Policlinico di Modena, Modena, Italy
                [e ]Section of Diagnostic Imaging, Department of Surgery, University of Parma, Parma, Italy
                [f ]National Institute for Health Research, Respiratory Clinical Research Facility, Royal Brompton Hospital, London, UK
                [g ]National Heart and Lung Institute, Imperial College, London, UK
                Article
                S2213-2600(20)30222-8
                10.1016/S2213-2600(20)30222-8
                7228737
                32422177
                69199476-b96d-4db8-856f-9b06c9e95e87
                © 2020 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Comments

                Comment on this article