10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prolonged Viral Shedding in Patients with Mild to Moderate COVID-19 Disease: A Regional Perspective

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The risk of transmission of Coronavirus Disease 2019 (COVID-19) is increasingly understood to be greatest early after symptom onset, however, factors associated with prolonged and increased risk of transmission remain unclear. In settings where COVID-19 prevalence is low, there may be a benefit of extending the period that patients are isolated to decrease the risk of transmission. This study explored the duration of viral shedding in such a location, in patients with mild-moderate COVID-19 disease in Ballarat, Australia.

          Methods

          Patients diagnosed with COVID-19 disease using a real-time reverse-transcriptase–polymerase-chain-reaction (RT-PCR) assay from oropharyngeal and bilateral deep nasopharyngeal sampling and managed through Ballarat Health Services between March 1 and May 1, 2020 were included. Patients were retested if they were afebrile for >72 hours, asymptomatic and >14 days since symptom onset. If positive on retesting, patients were tested every 3 to 7 days thereafter.

          Results

          Patients underwent testing a median of 4 days (range 1-12) after initial symptom onset. Duration of symptoms ranged from 1 to 36 days. Positive tests were recorded up to a median of day 21 (range 6-38). Cycle thresholds were inversely correlated with time since symptom onset ( P < .0001). Median time to the first negative test was 25 days (range 12-32). Two patients who had remained asymptomatic for >7 days after initial symptom onset had recrudescence of mild symptoms on day 13 and 14; both tested positive on follow-up tests at this time.

          Conclusions

          This study demonstrates prolonged shedding of COVID-19 in patients with mild-moderate disease. It suggests that some patients with mild disease may have recrudescence of symptoms a week or more after their initial symptoms resolved.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virological assessment of hospitalized patients with COVID-2019

            Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Viral dynamics in mild and severe cases of COVID-19

              Coronavirus disease 2019 (COVID-19) is a new pandemic disease. We previously reported that the viral load of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peaks within the first week of disease onset.1, 2 Findings from Feb, 2020, indicated that the clinical spectrum of this disease can be very heterogeneous. 3 Here, we report the viral RNA shedding patterns observed in patients with mild and severe COVID-19. 76 patients admitted to the First Affiliated Hospital of Nanchang University (Nanchang, China) from Jan 21 to Feb 4, 2020, were included in the study. All patients were confirmed to have COVID-19 at the time of admission by RT-PCR. The viral loads of their nasopharyngeal swab samples were estimated with the DCt method (Ctsample – Ctref). Patients who had any of the following features at the time of, or after, admission were classified as severe cases: (1) respiratory distress (≥30 breaths per min); (2) oxygen saturation at rest ≤93%; (3) ratio of partial pressure of arterial oxygen to fractional concentration of oxygen inspired air ≤300 mm Hg; or (4) severe disease complications (eg, respiratory failure, requirement of mechanical ventilation, septic shock, or non-respiratory organ failure). 46 (61%) individuals were classified as mild cases and 30 (39%) were classified as severe cases. The basic demographic data and initial clinical symptoms of these patients are shown in the appendix. Parameters did not differ significantly between the groups, except that patients in the severe group were significantly older than those in the mild group, as expected. 4 No patient died from the infection. 23 (77%) of 30 severe cases received intensive care unit (ICU) treatment, whereas none of the mild cases required ICU treatment. We noted that the DCt values of severe cases were significantly lower than those of mild cases at the time of admission (appendix). Nasopharyngeal swabs from both the left and right nasal cavities of the same patient were kept in a sample collection tube containing 3 mL of standard viral transport medium. All samples were collected according to WHO guidelines. 5 The mean viral load of severe cases was around 60 times higher than that of mild cases, suggesting that higher viral loads might be associated with severe clinical outcomes. We further stratified these data according to the day of disease onset at the time of sampling. The DCt values of severe cases remained significantly lower for the first 12 days after onset than those of corresponding mild cases (figure A ). We also studied serial samples from 21 mild and ten severe cases (figure B). Mild cases were found to have an early viral clearance, with 90% of these patients repeatedly testing negative on RT-PCR by day 10 post-onset. By contrast, all severe cases still tested positive at or beyond day 10 post-onset. Overall, our data indicate that, similar to SARS in 2002–03, 6 patients with severe COVID-19 tend to have a high viral load and a long virus-shedding period. This finding suggests that the viral load of SARS-CoV-2 might be a useful marker for assessing disease severity and prognosis. Figure Viral dynamics in patients with mild and severe COVID-19 (A) DCT values (Ctsample-Ctref) from patients with mild and severe COVID-19 at different stages of disease onset. Median, quartile 1, and quartile 3 are shown. (B) DCT values of serial samples from patients with mild and severe COVID-19. COVID-19=coronavirus disease 2019. *p<0·005.
                Bookmark

                Author and article information

                Journal
                Infect Dis (Auckl)
                Infect Dis (Auckl)
                IDR
                spidr
                Infectious Diseases
                SAGE Publications (Sage UK: London, England )
                1178-6337
                13 April 2021
                2021
                : 14
                : 11786337211010428
                Affiliations
                [1 ]Internal Medical Services, Ballarat Health Services, Ballarat, VIC, Australia
                [2 ]Department of Infectious Diseases, University Hospital Geelong, Geelong, VIC, Australia
                [3 ]Dorevitch Pathology, Heidelberg, VIC, Australia
                [4 ]Chief Medical Officer, Ballarat Health Services, Ballarat, VIC, Australia
                [5 ]Global Health Division, Menzies School of Health Research and Charles Darwin University, Tiwi, NT, Australia
                Author notes
                [*]Robert J Commons, Internal Medical Services, Ballarat Health Services, 1 Drummond Street North, Ballarat, VIC 3350, Australia. Email: robert.commons@ 123456gmail.com
                Author information
                https://orcid.org/0000-0002-3359-5632
                Article
                10.1177_11786337211010428
                10.1177/11786337211010428
                8047841
                33911876
                68c713dd-0be0-4f53-b8c0-24f9257a9427
                © The Author(s) 2021

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 3 November 2020
                : 14 March 2021
                Categories
                Original Research
                Custom metadata
                January-December 2021
                ts1

                covid-19,sars-cov-2,shedding,australia,mild
                covid-19, sars-cov-2, shedding, australia, mild

                Comments

                Comment on this article