2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Amnion Epithelial Cells (AECs) Respond to the FSL-1 Lipopeptide by Engaging the NLRP7 Inflammasome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context and Objectives: Inflammation is the leading mechanism involved in both physiological and pathological rupture of fetal membranes. Our aim was to obtain a better characterization of the inflammasome-dependent inflammation processes in these tissues, with a particular focus on the nucleotide-binding oligomerization domain (NOD)–like receptor, pyrin domain containing protein 7 (NLRP7) inflammasome.

          Methods: The presence of NLRP7 inflammasome actors [NLRP7, apoptosis-associated speck–like protein containing a CARD domain (ASC), and caspase-1] was confirmed by reverse transcriptase–polymerase chain reaction (RT-PCR) in human amnion and choriodecidua at the three trimesters and at term. The protein concentrations were then determined by enzyme-linked immunosorbent assay in term tissues, with or without labor. The presence of Mycoplasma salivarium and Mycoplasma fermentans in human fetal membranes was investigated using a PCR approach. Human amnion epithelial cells (AECs) were treated for 4 or 20 h with fibroblast-stimulating lipopeptide-1 (FSL-1), a M. salivarium–derived ligand. Transcripts and proteins quantity was then measured by RT–quantitative PCR and Western blotting, respectively. NLRP7 and ASC colocalization was confirmed by immunofluorescence. Western blots allowed analysis of pro–caspase-1 and gasdermin D cleavage.

          Results: NLRP7, ASC, and caspase-1 transcripts were expressed in both sheets of human fetal membranes during all pregnancy stages, but only ASC protein expression was increased with labor. In addition, M. salivarium and M. fermentans were detected for the first time in human fetal membranes. NLRP7 and caspase-1 transcripts, as well as NLRP7, ASC, and pro–caspase-1 protein levels, were increased in FSL-1–treated AECs. The NLRP7 inflammasome assembled around the nucleus, and pro–caspase-1 and gasdermin D were cleaved into their mature forms after FSL-1 stimulation.

          Conclusion: Two new mycoplasmas, M. salivarium and M. fermentans, were identified in human fetal membranes, and a lipopeptide derived from M. salivarium was found to induce NLRP7 inflammasome formation in AECs.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death

          Abstract Pyroptosis is a lytic type of cell death that is initiated by inflammatory caspases. These caspases are activated within multi‐protein inflammasome complexes that assemble in response to pathogens and endogenous danger signals. Pyroptotic cell death has been proposed to proceed via the formation of a plasma membrane pore, but the underlying molecular mechanism has remained unclear. Recently, gasdermin D (GSDMD), a member of the ill‐characterized gasdermin protein family, was identified as a caspase substrate and an essential mediator of pyroptosis. GSDMD is thus a candidate for pyroptotic pore formation. Here, we characterize GSDMD function in live cells and in vitro. We show that the N‐terminal fragment of caspase‐1‐cleaved GSDMD rapidly targets the membrane fraction of macrophages and that it induces the formation of a plasma membrane pore. In vitro, the N‐terminal fragment of caspase‐1‐cleaved recombinant GSDMD tightly binds liposomes and forms large permeability pores. Visualization of liposome‐inserted GSDMD at nanometer resolution by cryo‐electron and atomic force microscopy shows circular pores with variable ring diameters around 20 nm. Overall, these data demonstrate that GSDMD is the direct and final executor of pyroptotic cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pyroptosis and Apoptosis Pathways Engage in Bidirectional Crosstalk in Monocytes and Macrophages.

            Pyroptosis is a lytic form of programmed cell death mediated by the inflammatory caspase-1, -4, and -5. We recently discovered that small-molecule inhibitors of the serine peptidases DPP8 and DPP9 (DPP8/9) induce pro-caspase-1-dependent pyroptosis in monocytes and macrophages. Notably, DPP8/9 inhibitors, unlike microbial agents, absolutely require caspase-1 to induce cell death. Therefore, DPP8/9 inhibitors are useful probes to study caspase-1 in cells. Here, we show that, in the absence of the pyroptosis-mediating substrate gasdermin D (GSDMD), caspase-1 activates caspase-3 and -7 and induces apoptosis, demonstrating that GSDMD is the only caspase-1 substrate that induces pyroptosis. Conversely, we found that, during apoptosis, caspase-3/-7 specifically block pyroptosis by cleaving GSDMD at a distinct site from the inflammatory caspases that inactivates the protein. Overall, this work reveals bidirectional crosstalk between apoptosis and pyroptosis in monocytes and macrophages, further illuminating the complex interplay between cell death pathways in the innate immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity

              The inflammasome generates caspase-1 p20/p10, presumed to be the active protease. Boucher et al. demonstrate that the inflammasome contains an active caspase-1 species, p33/p10, and functions as a holoenzyme. Further caspase-1 self-processing generates and releases p20/p10 to terminate protease activity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                07 August 2020
                2020
                : 11
                : 1645
                Affiliations
                [1] 1Genetics, Reproduction and Development (GReD) Laboratory, Clermont Auvergne University, CNRS UMR 6293, INSERM U1103, Translational Approach to Epithelial Injury and Repair Team , Clermont-Ferrand, France
                [2] 2CHU Clermont-Ferrand, Medical Biochemistry and Molecular Biology Department , Clermont-Ferrand, France
                [3] 3CHU Clermont-Ferrand, Obstetrics and Gynecology Department , Clermont-Ferrand, France
                Author notes

                Edited by: Robson Coutinho-Silva, Federal University of Rio de Janeiro, Brazil

                Reviewed by: Nardhy Gomez-Lopez, Wayne State University School of Medicine, United States; Juan Pablo de Rivero Vaccari, University of Miami, United States

                *Correspondence: Loïc Blanchon loic.blanchon@ 123456uca.fr

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                †ORCID: Marilyne Lavergne orcid.org/0000-0002-4101-8675

                Article
                10.3389/fimmu.2020.01645
                7426397
                32849565
                67943a7f-74ca-4bca-a34e-4299d99abfd0
                Copyright © 2020 Lavergne, Belville, Choltus, Gross, Minet-Quinard, Gallot, Sapin and Blanchon.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 October 2019
                : 19 June 2020
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 96, Pages: 13, Words: 9154
                Funding
                Funded by: Région Auvergne-Rhône-Alpes 10.13039/501100010115
                Funded by: Ministère de l'Enseignement Supérieur et de la Recherche 10.13039/501100004792
                Categories
                Immunology
                Original Research

                Immunology
                fetal membranes,amnion epithelial cells,inflammation,nlrp7,inflammasomes,fsl-1,mycoplasmas
                Immunology
                fetal membranes, amnion epithelial cells, inflammation, nlrp7, inflammasomes, fsl-1, mycoplasmas

                Comments

                Comment on this article