2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Coevolution of motor cortex and behavioral specializations associated with flight and echolocation in bats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Complex movements evoked by microstimulation of precentral cortex.

          Electrical microstimulation was used to study primary motor and premotor cortex in monkeys. Each stimulation train was 500 ms in duration, approximating the time scale of normal reaching and grasping movements and the time scale of the neuronal activity that normally accompanies movement. This stimulation on a behaviorally relevant time scale evoked coordinated, complex postures that involved many joints. For example, stimulation of one site caused the mouth to open and also caused the hand to shape into a grip posture and move to the mouth. Stimulation of this site always drove the joints toward this final posture, regardless of the direction of movement required to reach the posture. Stimulation of other cortical sites evoked different postures. Postures that involved the arm were arranged across cortex to form a map of hand positions around the body. This stimulation-evoked map encompassed both primary motor and the adjacent premotor cortex. We suggest that these regions fit together into a single map of the workspace around the body.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parieto-frontal interactions, personal space, and defensive behavior.

            In the monkey brain, two interconnected cortical areas have distinctive neuronal responses to visual, tactile, and auditory stimuli. These areas are the ventral intraparietal area (VIP) and a polysensory zone in the precentral gyrus (PZ). The multimodal neurons in these areas typically respond to objects touching, near, or looming toward the body surface. Electrical stimulation of these areas evokes defensive-like withdrawing or blocking movements. These areas have been suggested to participate in a range of functions including navigation by optic flow, attention to nearby space, and the processing of object location for the guidance of movement. We suggest that a major emphasis of these areas is the construction of a margin of safety around the body and the selection and coordination of defensive behavior. In this review, we summarize the physiological properties of these brain areas and discuss a range of behavioral phenomena that might be served by those neuronal properties, including the ducking and blocking reactions that follow startle, the flight zone of animals, the personal space of humans, the nearby, multimodal attentional space that has been studied in humans, the withdrawal reaction to looming visual stimuli, and the avoidance of obstacles during self-motion such as locomotion or reaching.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation

              Two to nine months after the median nerve was transected and ligated in adult owl and squirrel monkeys, the cortical sectors representing it within skin surface representations in Areas 3b and 1 were completely occupied by 'new' and expanded representations of surrounding skin fields. Some occupying representations were 'new' in the sense that (1) there was no evidence that these skin surfaces were represented in this region prior to median nerve transection; and (2) these skin surfaces retained their normal representation elsewhere within these two cortical representations of hand surfaces. Large 'new' representations of the dorsal surfaces of digits 1 and 2 (innervated by the radial nerve) and large 'new' representations of the hypothenar eminence (innervated by the ulnar nerve) were consistently recorded. Some surrounding skin surface representations expanded into the former median nerve zone, so that bordering skin surfaces (the ulnar insular palmar pad, the third digital palmar pad, glabrous ulnar digit 3, radial hand dorsum) were represented over far larger than normal cortical areas. These expanded representations of always-innervated skin sometimes appeared to move in entirety into the former median nerve representational zone (e.g. in the zone of representation of glabrous digit 4) were also consistently recorded. Reorganizational changes following median nerve sections were much more variable in Area 1 than in Area 3b. The topographic order of the reorganized cortical zone was comparable to normal. In at least most cortical sectors, there was a consistent, maintained relationship between receptive field size and magnification, i.e. as representations enlarged, receptive fields were correspondingly reduced in size. These studies indicate that topographic representations of the skin surface in adult monkeys are maintained dynamically. They clearly reveal that this projection system retains a self-organizing capacity in adult monkeys. They suggest that processes perhaps identical to a part of the original developmental organizing processes (by which details of field topographics are established) are operational throughout life in this projection system in primates. Some of the implications of these studies for the neural origins of tactile perception are discussed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Current Biology
                Current Biology
                Elsevier BV
                09609822
                May 2022
                May 2022
                Article
                10.1016/j.cub.2022.04.094
                35617952
                6674d1f0-06c8-4d2e-ac27-aab103dcfd6a
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article