34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluoropolymer: A Review on Its Emulsion Preparation and Wettability to Solid-Liquid Interface

      , , , , , , ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the preparation of a superamphiphobic surface, the most basic method is to reduce the surface free energy of the interface. The C—F bond has a very low surface free energy, which can significantly change the wettability of the solid–liquid interface and make it a hydrophobic or oleophobic, or even superamphiphobic surface. Based on the analysis of a large number of research articles, the preparation and application progress in fluoropolymer emulsion were summarized. After that, some corresponding thoughts were put forward combined with our professional characteristics. According to recent research, the status of the fluoropolymer emulsion preparation system was analyzed. In addition, all related aspects of fluoropolymer emulsion were systematically classified in varying degrees. Furthermore, the interaction between fluoropolymer structure and properties, especially the interaction with nanomaterials, was also explored. The aim of this review is to try to attract more scholars’ attention to fluorocarbon interfacial materials. It is expected that it will make a certain theoretical and practical significance in the preparation and application of fluoropolymer.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Biophysics: water-repellent legs of water striders.

          Water striders (Gerris remigis) have remarkable non-wetting legs that enable them to stand effortlessly and move quickly on water, a feature believed to be due to a surface-tension effect caused by secreted wax. We show here, however, that it is the special hierarchical structure of the legs, which are covered by large numbers of oriented tiny hairs (microsetae) with fine nanogrooves, that is more important in inducing this water resistance.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Bioinspired Super-Wettability from Fundamental Research to Practical Applications

                Bookmark

                Author and article information

                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                January 2023
                January 16 2023
                : 28
                : 2
                : 905
                Article
                10.3390/molecules28020905
                9866989
                36677962
                64b09a4c-d831-4b8e-a3ce-1fc09e6a257a
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content416

                Cited by2

                Most referenced authors706