13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tuning the emissive triplet excited states of platinum(ii) Schiff base complexes with pyrene, and application for luminescent oxygen sensing and triplet–triplet-annihilation based upconversions

      , , , , ,
      Dalton Transactions
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: not found
          • Article: not found

          Photon upconversion based on sensitized triplet–triplet annihilation

            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            Photochemistry and Photophysics of Coordination Compounds: Iridium

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthesis and characterization of phosphorescent cyclometalated platinum complexes.

              The synthesis, electrochemistry, and photophysics of a series of square planar Pt(II) complexes are reported. The complexes have the general structure C(wedge)NPt(O(wedge)O),where C(wedge)N is a monoanionic cyclometalating ligand (e.g., 2-phenylpyridyl, 2-(2'-thienyl)pyridyl, 2-(4,6-difluorophenyl)pyridyl, etc.) and O(wedge)O is a beta-diketonato ligand. Reaction of K(2)PtCl(4) with a HC(wedge)N ligand precursor forms the chloride-bridged dimer, C(wedge)NPt(mu-Cl)(2)PtC(wedge)N, which is cleaved with beta-diketones such as acetyl acetone (acacH) and dipivaloylmethane (dpmH) to give the corresponding monomeric C(wedge)NPt(O(wedge)O) complex. The thpyPt(dpm) (thpy = 2-(2'-thienyl)pyridyl) complex has been characterized using X-ray crystallography. The bond lengths and angles for this complex are similar to those of related cyclometalated Pt complexes. There are two independent molecular dimers in the asymmetric unit, with intermolecular spacings of 3.45 and 3.56 A, consistent with moderate pi-pi interactions and no evident Pt-Pt interactions. Most of the C(wedge)NPt(O(wedge)O) complexes display a single reversible reduction wave between -1.9 and -2.6 V (vs Cp(2)Fe/Cp(2)Fe(+)), assigned to largely C(wedge)N ligand based reduction, and an irreversible oxidation, assigned to predominantly Pt based oxidation. DFT calculations were carried out on both the ground (singlet) and excited (triplet) states of these complexes. The HOMO levels are a mixture of Pt and ligand orbitals, while the LUMO is predominantly C(wedge)N ligand based. The emission characteristics of these complexes are governed by the nature of the organometallic cyclometalating ligand allowing the emission to be tuned throughout the visible spectrum. Twenty-three different C(wedge)N ligands have been examined, which gave emission lambda(max) values ranging from 456 to 600 nm. Well-resolved vibronic fine structure is observed in all of the emission spectra (room temperature and 77 K). Strong spin-orbit coupling of the platinum atom allows for the formally forbidden mixing of the (1)MLCT with the (3)MCLT and (3)pi-pi states. This mixing leads to high emission quantum efficiencies (0.02-0.25) and lifetimes on the order of microseconds for the platinum complexes.
                Bookmark

                Author and article information

                Journal
                ICHBD9
                Dalton Transactions
                Dalton Trans.
                Royal Society of Chemistry (RSC)
                1477-9226
                1477-9234
                2011
                2011
                : 40
                : 43
                : 11550
                Article
                10.1039/c1dt11001b
                21952177
                626f459c-80e7-4451-9723-a5149af6c010
                © 2011
                History

                Comments

                Comment on this article