12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Urbanization reduces gene flow but not genetic diversity of stream salamander populations in the New York City metropolitan area

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural landscape heterogeneity and barriers resulting from urbanization can reduce genetic connectivity between populations. The evolutionary, demographic, and ecological effects of reduced connectivity may lead to population isolation and ultimately extinction. Alteration to the terrestrial and aquatic environment caused by urban influence can affect gene flow, specifically for stream salamanders who depend on both landscapes for survival and reproduction. To examine how urbanization affects a relatively common stream salamander species, we compared genetic connectivity of Eurycea bislineata (northern two‐lined salamander) populations within and between streams in an urban, suburban, and rural habitat around the New York City (NYC) metropolitan area. We report reduced genetic connectivity between streams within the urban landscape found to correspond with potential barriers to gene flow, that is, areas with more dense urbanization (roadways, industrial buildings, and residential housing). The suburban populations also exhibited areas of reduced connectivity correlated with areas of greater human land use and greater connectivity within a preserve protected from development. Connectivity was relatively high among neighboring rural streams, but a major roadway corresponded with genetic breaks even though the habitat contained more connected green space overall. Despite greater human disturbance across the landscape, urban and suburban salamander populations maintained comparable levels of genetic diversity to their rural counterparts. Yet small effective population size in the urban habitats yielded a high probability of loss of heterozygosity due to genetic drift in the future. In conclusion, urbanization impacted connectivity among stream salamander populations where its continual influence may eventually hinder population persistence for this native species in urban habitats.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Second-generation PLINK: rising to the challenge of larger and richer datasets

          PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast model-based estimation of ancestry in unrelated individuals.

            Population stratification has long been recognized as a confounding factor in genetic association studies. Estimated ancestries, derived from multi-locus genotype data, can be used to perform a statistical correction for population stratification. One popular technique for estimation of ancestry is the model-based approach embodied by the widely applied program structure. Another approach, implemented in the program EIGENSTRAT, relies on Principal Component Analysis rather than model-based estimation and does not directly deliver admixture fractions. EIGENSTRAT has gained in popularity in part owing to its remarkable speed in comparison to structure. We present a new algorithm and a program, ADMIXTURE, for model-based estimation of ancestry in unrelated individuals. ADMIXTURE adopts the likelihood model embedded in structure. However, ADMIXTURE runs considerably faster, solving problems in minutes that take structure hours. In many of our experiments, we have found that ADMIXTURE is almost as fast as EIGENSTRAT. The runtime improvements of ADMIXTURE rely on a fast block relaxation scheme using sequential quadratic programming for block updates, coupled with a novel quasi-Newton acceleration of convergence. Our algorithm also runs faster and with greater accuracy than the implementation of an Expectation-Maximization (EM) algorithm incorporated in the program FRAPPE. Our simulations show that ADMIXTURE's maximum likelihood estimates of the underlying admixture coefficients and ancestral allele frequencies are as accurate as structure's Bayesian estimates. On real-world data sets, ADMIXTURE's estimates are directly comparable to those from structure and EIGENSTRAT. Taken together, our results show that ADMIXTURE's computational speed opens up the possibility of using a much larger set of markers in model-based ancestry estimation and that its estimates are suitable for use in correcting for population stratification in association studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Discriminant analysis of principal components: a new method for the analysis of genetically structured populations

              Background The dramatic progress in sequencing technologies offers unprecedented prospects for deciphering the organization of natural populations in space and time. However, the size of the datasets generated also poses some daunting challenges. In particular, Bayesian clustering algorithms based on pre-defined population genetics models such as the STRUCTURE or BAPS software may not be able to cope with this unprecedented amount of data. Thus, there is a need for less computer-intensive approaches. Multivariate analyses seem particularly appealing as they are specifically devoted to extracting information from large datasets. Unfortunately, currently available multivariate methods still lack some essential features needed to study the genetic structure of natural populations. Results We introduce the Discriminant Analysis of Principal Components (DAPC), a multivariate method designed to identify and describe clusters of genetically related individuals. When group priors are lacking, DAPC uses sequential K-means and model selection to infer genetic clusters. Our approach allows extracting rich information from genetic data, providing assignment of individuals to groups, a visual assessment of between-population differentiation, and contribution of individual alleles to population structuring. We evaluate the performance of our method using simulated data, which were also analyzed using STRUCTURE as a benchmark. Additionally, we illustrate the method by analyzing microsatellite polymorphism in worldwide human populations and hemagglutinin gene sequence variation in seasonal influenza. Conclusions Analysis of simulated data revealed that our approach performs generally better than STRUCTURE at characterizing population subdivision. The tools implemented in DAPC for the identification of clusters and graphical representation of between-group structures allow to unravel complex population structures. Our approach is also faster than Bayesian clustering algorithms by several orders of magnitude, and may be applicable to a wider range of datasets.
                Bookmark

                Author and article information

                Contributors
                nfusco1@fordham.edu
                Journal
                Evol Appl
                Evol Appl
                10.1111/(ISSN)1752-4571
                EVA
                Evolutionary Applications
                John Wiley and Sons Inc. (Hoboken )
                1752-4571
                12 June 2020
                January 2021
                : 14
                : 1 , Evolution in Urban Environments ( doiID: 10.1111/eva.v14.1 )
                : 99-116
                Affiliations
                [ 1 ] Department of Biology Fordham University Bronx NY USA
                [ 2 ] Natural Resources Group New York City Department of Parks & Recreation New York NY USA
                Author notes
                [*] [* ] Correspondence

                Nicole A. Fusco, Department of Biology, Fordham University, Bronx, NY, USA.

                Email: nfusco1@ 123456fordham.edu

                Author information
                https://orcid.org/0000-0002-2240-6330
                Article
                EVA13025
                10.1111/eva.13025
                7819553
                33519959
                60d4ee35-281f-4bf0-abbc-1cc018912235
                © 2020 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 06 January 2020
                : 12 May 2020
                Page count
                Figures: 5, Tables: 1, Pages: 18, Words: 13487
                Funding
                Funded by: Mianus River Gorge Preserve RAP Program
                Award ID: 2014‐2017
                Funded by: National Science Foundation , open-funder-registry 10.13039/100000001;
                Award ID: DBI 1531639
                Funded by: Louis Calder Center Biological Field Station Graduate Student Research Grant
                Award ID: 2016‐2019
                Categories
                Special Issue Original Article
                Special Issue Original Articles
                Custom metadata
                2.0
                January 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.9.6 mode:remove_FC converted:21.01.2021

                Evolutionary Biology
                genetic connectivity,stream salamanders,urbanization
                Evolutionary Biology
                genetic connectivity, stream salamanders, urbanization

                Comments

                Comment on this article