84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Targets of Naturopathy in Cancer Research: Bridge to Modern Medicine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relevance of naturopathy (defined as the practice of medicine for the treatment of human diseases with natural agents) in human cancer is beginning to be appreciated, as documented by renewed interest in nutraceutical research, the natural anticancer agents of dietary origin. Because of their pleiotropic effects and the ability to modulate multiple signaling pathways, which is a good attribute of natural agents, nutraceuticals have frequently been demonstrated to re-sensitize drug-resistant cancers. The effectiveness of nutraceuticals can be further enhanced if the tools for the relative assessment of their molecular targets are readily available. Such information can be critical for determining their most effective uses. Here, we discuss the anticancer potential of nutraceuticals and the associated challenges that have interfered with their translational potential as a naturopathic approach for the management of cancers. In the years to come, an efficient screening and assessment of molecular targets will be the key to make rapid progress in the area of drug design and discovery, especially focusing on evidence-based development of naturopathy for the treatment of human malignancies.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Multitargeting by curcumin as revealed by molecular interaction studies.

          Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca(2+) ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto-enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting binding sites, has also been used to further characterize curcumin's binding sites. Furthermore, the ability of curcumin to bind directly to carrier proteins improves its solubility and bioavailability. In this review, we focus on how curcumin directly targets signaling molecules, as well as the different forces that bind the curcumin-protein complex and how this interaction affects the biological properties of proteins. We will also discuss various analogues of curcumin designed to bind selective targets with increased affinity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genistein Inhibits Prostate Cancer Cell Growth by Targeting miR-34a and Oncogenic HOTAIR

            Objective Genistein is a soy isoflavone that has antitumor activity both in vitro and in vivo. It has been shown that genistein inhibits many type of cancers including prostate cancer (PCa) by regulating several cell signaling pathways and microRNAs (miRNAs). Recent studies suggest that the long non-coding RNAs (lncRNAs) are also involved in many cellular processes. At present there are no reports about the relationship between gensitein, miRNAs and lncRNAs. In this study, we focused on miRNAs, lncRNA that are regulated by genistein and investigated their functional role in PCa. Method Microarray (SurePrint G3 Human GE 8×60K) was used for expression profiling of genistein treated and control PCa cells (PC3 and DU145). Functional assay (cell proliferation, migration, invasion, apoptosis and cell cycle assays) were performed with the PCa cell lines, PC3 and DU145. Both in vitro and in vivo (nude mouse) models were used for growth assays. Luciferase reporter assays were used for binding of miR-34a to HOTAIR. Results LncRNA profiling showed that HOTAIR was highly regulated by genistein and its expression was higher in castration-resistant PCa cell lines than in normal prostate cells. Knockdown (siRNA) of HOTAIR decreased PCa cell proliferation, migration and invasion and induced apoptosis and cell cycle arrest. miR-34a was also up-regulated by genistein and may directly target HOTAIR in both PC3 and DU145 PCa cells. Conclusions Our results indicated that genistein inhibited PCa cell growth through down-regulation of oncogenic HOTAIR that is also targeted by tumor suppressor miR-34a. These findings enhance understanding of how genistein regulates lncRNA HOTAIR and miR-34a in PCa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhancing the bioavailability of resveratrol by combining it with piperine.

              Resveratrol (3,5,4'-trihydroxystilbene) is a phytoalexin shown to possess a multitude of health-promoting properties in pre-clinical studies. However, the poor in vivo bioavailability of resveratrol due to its rapid metabolism is being considered as a major obstacle in translating its effects in humans. In this study, we examined the hypothesis that piperine will enhance the pharmacokinetic parameters of resveratrol via inhibiting its glucuronidation, thereby slowing its elimination. Employing a standardized LC/MS assay, we determined the effect of piperine co-administration with resveratrol on serum levels resveratrol and resveratrol-3-O-β-D-glucuronide in C57BL mice. Mice were administered resveratrol (100 mg/kg; oral gavage) or resveratrol (100 mg/kg; oral gavage)+piperine (10 mg/kg; oral gavage), and the serum levels of resveratrol and resveratrol-3-O-β-D-glucuronide were analyzed at different times. We found that the degree of exposure (i.e. AUC) to resveratrol was enhanced to 229% and the maximum serum concentration (C(max)) was increased to 1544% with the addition of piperine. Our study demonstrated that piperine significantly improves the in vivo bioavailability of resveratrol. However, further detailed research is needed to study the mechanism of improved bioavailability of resveratrol via its combination with piperine as well as its effect on resveratrol metabolism. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                06 January 2015
                January 2015
                : 7
                : 1
                : 321-334
                Affiliations
                [1 ]Department of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; E-Mails: ahmada@ 123456karmanos.org (A.A.); ginneba3@ 123456gmail.com (K.R.G.); yiweili@ 123456med.wayne.edu (Y.L.)
                [2 ]Interdisciplinary Science & Technology Research Academy Department of Chemistry, Maharashtra Cosmopolitan Education Society’s Abeda Inamdar Senior College of Arts, Science and Commerce, Pune 411001, India; E-Mail: bhash46@ 123456hotmail.com
                [3 ]Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: fsarkar@ 123456med.wayne.edu ; Tel.: +1-313-576-8327; Fax: +1-313-576-8389.
                Article
                nutrients-07-00321
                10.3390/nu7010321
                4303842
                25569626
                6026aa26-667c-4527-b63a-9823d56a74e0
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 November 2014
                : 23 December 2014
                Categories
                Review

                Nutrition & Dietetics
                cancer,naturopathy,nutraceuticals
                Nutrition & Dietetics
                cancer, naturopathy, nutraceuticals

                Comments

                Comment on this article