40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nonlinear Dynamics of Nonsynonymous ( d N) and Synonymous ( d S) Substitution Rates Affects Inference of Selection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Selection modulates gene sequence evolution in different ways by constraining potential changes of amino acid sequences (purifying selection) or by favoring new and adaptive genetic variants (positive selection). The number of nonsynonymous differences in a pair of protein-coding sequences can be used to quantify the mode and strength of selection. To control for regional variation in substitution rates, the proportionate number of nonsynonymous differences ( d N) is divided by the proportionate number of synonymous differences ( d S). The resulting ratio ( d N/ d S) is a widely used indicator for functional divergence to identify particular genes that underwent positive selection. With the ever-growing amount of genome data, summary statistics like mean d N/ d S allow gathering information on the mode of evolution for entire species. Both applications hinge on the assumption that d S and mean d S (∼branch length) are neutral and adequately control for variation in substitution rates across genes and across organisms, respectively. We here explore the validity of this assumption using empirical data based on whole-genome protein sequence alignments between human and 15 other vertebrate species and several simulation approaches. We find that d N/ d S does not appropriately reflect the action of selection as it is strongly influenced by its denominator ( d S). Particularly for closely related taxa, such as human and chimpanzee, d N/ d S can be misleading and is not an unadulterated indicator of selection. Instead, we suggest that inconsistencies in the behavior of d N/ d S are to be expected and highlight the idea that this behavior may be inherent to taking the ratio of two randomly distributed variables that are nonlinearly correlated. New null hypotheses will be needed to adequately handle these nonlinear dynamics.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          A codon-based model of nucleotide substitution for protein-coding DNA sequences.

          (1994)
          A codon-based model for the evolution of protein-coding DNA sequences is presented for use in phylogenetic estimation. A Markov process is used to describe substitutions between codons. Transition/transversion rate bias and codon usage bias are allowed in the model, and selective restraints at the protein level are accommodated using physicochemical distances between the amino acids coded for by the codons. Analyses of two data sets suggest that the new codon-based model can provide a better fit to data than can nucleotide-based models and can produce more reliable estimates of certain biologically important measures such as the transition/transversion rate ratio and the synonymous/nonsynonymous substitution rate ratio.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular signatures of natural selection.

            There is an increasing interest in detecting genes, or genomic regions, that have been targeted by natural selection. The interest stems from a basic desire to learn more about evolutionary processes in humans and other organisms, and from the realization that inferences regarding selection may provide important functional information. This review provides a nonmathematical description of the issues involved in detecting selection from DNA sequences and SNP data and is intended for readers who are not familiar with population genetic theory. Particular attention is placed on issues relating to the analysis of large-scale genomic data sets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionary and biomedical insights from the rhesus macaque genome.

              The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                2009
                13 August 2009
                2009
                13 August 2009
                : 1
                : 308-319
                Affiliations
                Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
                Author notes

                Laurence Hurst, Associate Editor

                Article
                10.1093/gbe/evp030
                2817425
                20333200
                5f6827f7-b726-4dde-8e32-52a236271f57
                © The Author(s) 2009. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 August 2009
                Categories
                Research Articles

                Genetics
                protein evolution,selection models,adaptive evolution,melanocortin-1-receptor,neutral theory,negative selection,positive selection,dn/ds ratio

                Comments

                Comment on this article