7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nucleosome-level 3D organization of the genome

      , ,
      Biochemical Society Transactions
      Portland Press Ltd.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Histone H4-K16 acetylation controls chromatin structure and protein interactions.

          Acetylation of histone H4 on lysine 16 (H4-K16Ac) is a prevalent and reversible posttranslational chromatin modification in eukaryotes. To characterize the structural and functional role of this mark, we used a native chemical ligation strategy to generate histone H4 that was homogeneously acetylated at K16. The incorporation of this modified histone into nucleosomal arrays inhibits the formation of compact 30-nanometer-like fibers and impedes the ability of chromatin to form cross-fiber interactions. H4-K16Ac also inhibits the ability of the adenosine triphosphate-utilizing chromatin assembly and remodeling enzyme ACF to mobilize a mononucleosome, indicating that this single histone modification modulates both higher order chromatin structure and functional interactions between a nonhistone protein and the chromatin fiber.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chromatin structure: a repeating unit of histones and DNA.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C.

              We describe a Hi-C-based method, Micro-C, in which micrococcal nuclease is used instead of restriction enzymes to fragment chromatin, enabling nucleosome resolution chromosome folding maps. Analysis of Micro-C maps for budding yeast reveals abundant self-associating domains similar to those reported in other species, but not previously observed in yeast. These structures, far shorter than topologically associating domains in mammals, typically encompass one to five genes in yeast. Strong boundaries between self-associating domains occur at promoters of highly transcribed genes and regions of rapid histone turnover that are typically bound by the RSC chromatin-remodeling complex. Investigation of chromosome folding in mutants confirms roles for RSC, "gene looping" factor Ssu72, Mediator, H3K56 acetyltransferase Rtt109, and the N-terminal tail of H4 in folding of the yeast genome. This approach provides detailed structural maps of a eukaryotic genome, and our findings provide insights into the machinery underlying chromosome compaction.
                Bookmark

                Author and article information

                Journal
                Biochemical Society Transactions
                Biochm. Soc. Trans.
                Portland Press Ltd.
                0300-5127
                1470-8752
                April 06 2018
                :
                :
                : BST20170388
                Article
                10.1042/BST20170388
                29626147
                5f350342-6aeb-45df-8bbd-9aa22a93c7fa
                © 2018
                History

                Comments

                Comment on this article