13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Identifying protein subcellular locations with embeddings-based node2loc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4717269e73">Identifying protein subcellular locations is an important topic in protein function prediction. Interacting proteins may share similar locations. Thus, it is imperative to infer protein subcellular locations by taking protein-protein interactions (PPIs)into account. In this study, we present a network embedding-based method, node2loc, to identify protein subcellular locations. node2loc first learns distributed embeddings of proteins in a protein-protein interaction (PPI)network using node2vec. Then the learned embeddings are further fed into a recurrent neural network (RNN). To resolve the severe class imbalance of different subcellular locations, Synthetic Minority Over-sampling Technique (SMOTE)is applied to artificially synthesize proteins for minority classes. node2loc is evaluated on our constructed human benchmark dataset with 16 subcellular locations and yields a Matthews correlation coefficient (MCC)value of 0.800, which is superior to baseline methods. In addition, node2loc yields a better performance on a Yeast benchmark dataset with 17 locations. The results demonstrate that the learned representations from a PPI network have certain discriminative ability for classifying protein subcellular locations. However, node2loc is a transductive method, it only works for proteins connected in a PPI network, and it needs to be retrained for new proteins. In addition, the PPI network needs be annotated to some extent with location information. node2loc is freely available at https://github.com/xypan1232/node2loc. </p>

          Related collections

          Author and article information

          Journal
          IEEE/ACM Transactions on Computational Biology and Bioinformatics
          IEEE/ACM Trans. Comput. Biol. and Bioinf.
          Institute of Electrical and Electronics Engineers (IEEE)
          1545-5963
          1557-9964
          2374-0043
          2021
          : 1
          Article
          10.1109/TCBB.2021.3080386
          33989156
          5eec92a9-9dc6-48c1-a65b-ebbdea5f742d
          © 2021
          History

          Comments

          Comment on this article