82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Finger millet RNA-seq reveals differential gene expression associated with tolerance to aluminum toxicity and provides novel genomic resources

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eleusine coracana, finger millet, is a multipurpose crop cultivated in arid and semi-arid regions of Africa and Asia. RNA sequencing (RNA-seq) was used in this study to obtain valuable genomic resources and identify genes differentially expressed between Al-tolerant and Al-susceptible genotypes. Two groups of finger millet genotypes were used: Al-tolerant (215836, 215845, and 229722) and Al-susceptible (212462, 215804 and 238323). The analysis of the RNA-seq data resulted in 198,546 unigenes, 56.5% of which were annotated with significant hits in one or more of the following six databases: NR (48.8%), GO (29.7%), KEGG (45%), PlantTFDB (19.0%), Uniprot (49.2%), and NT (46.2%). It is noteworthy that only 220 unigenes in the NR database had significant hits against finger millet sequences suggesting that finger millet’s genomic resources are scarce. The gene expression analysis revealed that 322 genes were significantly differentially expressed between the Al-tolerant and Al-susceptible genotypes, of which 40.7% were upregulated while 59.3% were downregulated in Al-tolerant genotypes. Among the significant DEGs, 54.7% were annotated in the GO database with the top hits being ATP binding (GO:0005524) and DNA binding (GO:0003677) in the molecular function, DNA integration (GO:0015074) and cell redox homeostasis in the biological process, as well as cellular anatomical entity and intracellular component in the cellular component GO classes. Several of the annotated DEGs were significantly enriched for their corresponding GO terms. The KEGG pathway analysis resulted in 60 DEGs that were annotated with different pathway classes, of which carbohydrate metabolism and signal transduction were the most prominent. The homologs of a number of significant DEGs have been previously reported as being associated with Al or other abiotic stress responses in various crops, including carboxypeptidase SOL1, HMA3, AP2, bZIP, C3H, and WRKY TF genes. A more detailed investigation of these and other DEGs will enable genomic-led breeding for Al tolerance in finger millet. RNA-seq data analysis also yielded 119,073 SNP markers, the majority of which had PIC values above 0.3, indicating that they are highly informative. Additionally, 3,553 single-copy SSR markers were identified, of which trinucleotide SSRs were the most prevalent. These genomic resources contribute substantially to the enrichment of genomic databases for finger millet, and facilitate future research on this crop.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Sequence Alignment/Map format and SAMtools

            Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fast and accurate short read alignment with Burrows–Wheeler transform

              Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                09 December 2022
                2022
                : 13
                : 1068383
                Affiliations
                [1] 1 Biology Department, Aksum University , Aksum, Ethiopia
                [2] 2 Institute of Biotechnology, Addis Ababa University , Addis Ababa, Ethiopia
                [3] 3 Department of Plant Breeding, Swedish University of Agricultural Sciences , Lomma, Sweden
                [4] 4 Ethiopian Biotechnology Institute, Ministry of Innovation and Technology , Addis Ababa, Ethiopia
                Author notes

                Edited by: Ahmad Arzani, Isfahan University of Technology, Iran

                Reviewed by: Rudabeh Ravash, Shahrekord University, Iran; Anuj Kumar, Dalhousie University, Canada

                *Correspondence: Teklehaimanot Haileselassie, Tekle1961@ 123456yahoo.com

                This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2022.1068383
                9780683
                36570897
                5dee8c6d-d7a0-4eae-a0c1-f3371197281a
                Copyright © 2022 Brhane, Haileselassie, Tesfaye, Ortiz, Hammenhag, Abreha, Vetukuri and Geleta

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 October 2022
                : 21 November 2022
                Page count
                Figures: 12, Tables: 4, Equations: 1, References: 107, Pages: 23, Words: 11223
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                aluminum toxicity,differentially expressed genes,eleusine coracana,rna-seq,transcriptome

                Comments

                Comment on this article