5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dark matter distribution in Milky Way-analog galaxies

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our current understanding of how dark matter (DM) is distributed within the Milky Way (MW) halo, particularly in the solar neighborhood, is based on either careful studies of the local stellar orbits or model assumptions on the global shape of the MW halo. In this work, we undertake a study of external galaxies, with the intent of providing insight to the DM distribution in MW-analog galaxies. For this, we carefully select a sample of galaxies similar to the MW, based on maximum atomic hydrogen (HI) rotational velocity (v=200-280 km s^{-1}) and morphological type (Sab-Sbc) criteria. With a need for deep, highly-resolved HI, our resulting sample is composed of 5 galaxies from the VIVA and THINGS surveys. To perform our baryonic analysis, we use deep Spitzer mid-IR images at 3.6 and 4.5 {\mu}m from the S4G survey. Based on the dynamical three-dimensional modeling software 3D-Barolo, we construct RCs and derive the gas and stellar contributions from the galaxy\'s gaseous- and stellar-disks mass surface density profiles. Through a careful decomposition of their rotation curves into their baryonic (stars, gas) and DM components, we isolate the DM contribution by using an MCMC-based approach. Based on the Sun\'s location and the MW\'s R_{25}, we define the corresponding location of the solar neighborhood in these systems. We put forward a window for the DM density (\rho=0.21-0.46 GeV cm^{-3}) at these galactocentric distances in our MW analog sample, consistent with the values found for the MW\'s local DM density, based on more traditional approaches found in the literature.

          Related collections

          Author and article information

          Journal
          20 October 2023
          Article
          2310.13839
          5d7545ae-2f1e-463b-a840-9f0ed0c7ce47

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          16 pages, 6 figures, 3 tables, submitted to ApJ
          astro-ph.GA astro-ph.CO

          Cosmology & Extragalactic astrophysics,Galaxy astrophysics
          Cosmology & Extragalactic astrophysics, Galaxy astrophysics

          Comments

          Comment on this article