9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CRISPR adaptation immunizes bacteria and archaea against viruses. During adaptation, the Cas1-Cas2 complex integrates fragments of invader DNA as spacers in the CRISPR array. Recently, an additional protein Cas4 has been implicated in selection and processing of prespacer substrates for Cas1-Cas2, although this mechanism remains unclear. We show that Cas4 interacts directly with Cas1-Cas2 forming a Cas4-Cas1-Cas2 complex that captures and processes prespacers prior to integration. Structural analysis of the Cas4-Cas1-Cas2 complex reveals two copies of Cas4 that closely interact with the two integrase active sites of Cas1, suggesting a mechanism for substrate handoff following processing. We also find that the Cas4-Cas1-Cas2 complex processes single-stranded DNA provided in cis or in trans with a double-stranded DNA duplex. Cas4 cleaves precisely upstream of PAM sequences, ensuring the acquisition of functional spacers. Our results explain how Cas4 cleavage coordinates with Cas1-Cas2 integration and defines the exact cleavage sites and specificity of Cas4.

          eLife digest

          Many people have now heard of CRISPR, or CRISPR-Cas9, as a gene editing technology. Yet CRISPR evolved in bacteria to protect them against viral infections. While parts of the CRISPR system are now being widely used, the research community still does not know everything about how the system operates in its natural setting.

          In bacteria, CRISPR protects against infection by making lasting records of viruses a cell has encountered. It cuts short sections from the viral DNA and keeps them as a way to fight the virus if it ever returns. The key proteins in collecting and storing the virus DNA are called Cas1, Cas2 and Cas4. Previous work suggests that Cas4 is important for cutting suitable lengths of DNA for storage. Yet, how Cas4, Cas1 and Cas2 work together to select, cut and store DNA is not well studied.

          Lee et al. have now used electron microscopy to examine how Cas1, Cas2 and Cas4 cooperate in the CRISPR system. The proteins studied came from bacteria called Bacillus halodurans. The structure revealed direct links between the Cas1 and Cas4 proteins that likely help to ensure these proteins are coordinated correctly to cut and store the DNA sections. Specifically, it showed that two Cas4 proteins interact with the two key active sites of Cas1. The findings also highlight that Cas4 cuts DNA at specific locations to make sure the resulting DNA sections are suitable for CRISPR protection.

          The close association between Cas1 and Cas4 could be a critical aspect of the reliability of the CRISPR system in protecting bacteria from viruses. There are more bacteria on Earth than any other living thing. Understanding their biology has wide ranging environmental, health and bioengineering applications. In addition, learning more about the CRISPR system could further expand its potential to drive revolutionary biotechnology tools derived from these bacterial immune systems.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.

          Prokaryotes contain short DN repeats known as CRISPR, recognizable by the regular spacing existing between the recurring units. They represent the most widely distributed family of repeats among prokaryotic genomes suggesting a biological function. The origin of the intervening sequences, at present unknown, could provide clues about their biological activities. Here we show that CRISPR spacers derive from preexisting sequences, either chromosomal or within transmissible genetic elements such as bacteriophages and conjugative plasmids. Remarkably, these extrachromosomal elements fail to infect the specific spacer-carrier strain, implying a relationship between CRISPR and immunity against targeted DNA. Bacteriophages and conjugative plasmids are involved in prokaryotic population control, evolution, and pathogenicity. All these biological traits could be influenced by the presence of specific spacers. CRISPR loci can be visualized as mosaics of a repeated unit, separated by sequences at some time present elsewhere in the cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.

            Numerous prokaryote genomes contain structures known as clustered regularly interspaced short palindromic repeats (CRISPRs), composed of 25-50 bp repeats separated by unique sequence spacers of similar length. CRISPR structures are found in the vicinity of four genes named cas1 to cas4. In silico analysis revealed another cluster of three genes associated with CRISPR structures in many bacterial species, named here as cas1B, cas5 and cas6, and also revealed a certain number of spacers that have homology with extant genes, most frequently derived from phages, but also derived from other extrachromosomal elements. Sequence analysis of CRISPR structures from 24 strains of Streptococcus thermophilus and Streptococcus vestibularis confirmed the homology of spacers with extrachromosomal elements. Phage sensitivity of S. thermophilus strains appears to be correlated with the number of spacers in the CRISPR locus the strain carries. The authors suggest that the spacer elements are the traces of past invasions by extrachromosomal elements, and hypothesize that they provide the cell immunity against phage infection, and more generally foreign DNA expression, by coding an anti-sense RNA. The presence of gene fragments in CRISPR structures and the nuclease motifs in cas genes of both cluster types suggests that CRISPR formation involves a DNA degradation step.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phage response to CRISPR-encoded resistance in Streptococcus thermophilus.

              Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes are linked to a mechanism of acquired resistance against bacteriophages. Bacteria can integrate short stretches of phage-derived sequences (spacers) within CRISPR loci to become phage resistant. In this study, we further characterized the efficiency of CRISPR1 as a phage resistance mechanism in Streptococcus thermophilus. First, we show that CRISPR1 is distinct from previously known phage defense systems and is effective against the two main groups of S. thermophilus phages. Analyses of 30 bacteriophage-insensitive mutants of S. thermophilus indicate that the addition of one new spacer in CRISPR1 is the most frequent outcome of a phage challenge and that the iterative addition of spacers increases the overall phage resistance of the host. The added new spacers have a size of between 29 to 31 nucleotides, with 30 being by far the most frequent. Comparative analysis of 39 newly acquired spacers with the complete genomic sequences of the wild-type phages 2972, 858, and DT1 demonstrated that the newly added spacer must be identical to a region (named proto-spacer) in the phage genome to confer a phage resistance phenotype. Moreover, we found a CRISPR1-specific sequence (NNAGAAW) located downstream of the proto-spacer region that is important for the phage resistance phenotype. Finally, we show through the analyses of 20 mutant phages that virulent phages are rapidly evolving through single nucleotide mutations as well as deletions, in response to CRISPR1.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Role: Senior Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                30 April 2019
                2019
                : 8
                : e44248
                Affiliations
                [1]deptRoy J. Carver Department of Biochemistry, Biophysics, & Molecular Biology Iowa State University AmesUnited States
                Cornell University
                Johns Hopkins University School of Medicine United States
                Cornell University
                University of St Andrews United Kingdom
                Author information
                http://orcid.org/0000-0002-3365-8955
                http://orcid.org/0000-0001-7681-6987
                Article
                44248
                10.7554/eLife.44248
                6519985
                31021314
                5cc1ac0a-bf06-4c62-991b-94cbcb8cf249
                © 2019, Lee et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 09 December 2018
                : 19 April 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000057, National Institute of General Medical Sciences;
                Award ID: GM115874
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Biochemistry and Chemical Biology
                Structural Biology and Molecular Biophysics
                Custom metadata
                During CRISPR adaptation, Cas4 forms a ternary complex with the Cas1-Cas2 spacer integration complex, an interaction that coordinates substrate hand-off following precise, PAM-dependent prespacer processing prior to integration.

                Life sciences
                b. halodurans,crispr-cas,electron microscopy,dna-protein interaction,pam,nuclease,other
                Life sciences
                b. halodurans, crispr-cas, electron microscopy, dna-protein interaction, pam, nuclease, other

                Comments

                Comment on this article