4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Strain induced power enhancement of far-UVC LEDs on high temperature annealed AlN templates

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High temperature annealed AlN/sapphire templates exhibit a reduced in-plane lattice constant compared to conventional non-annealed AlN/sapphire grown by metalorganic vapor phase epitaxy (MOVPE). This leads to additional lattice mismatch between the template and the AlGaN-based ultraviolet-C light emitting diode (UVC LED) heterostructure grown on these templates. This mismatch introduces additional compressive strain in AlGaN quantum wells resulting in enhanced transverse electric polarization of the quantum well emission at wavelengths below 235 nm compared to layer structures deposited on conventional MOVPE-grown AlN templates, which exhibit mainly transverse magnetic polarized emission. In addition, high temperature annealed AlN/sapphire templates also feature reduced defect densities leading to reduced non-radiative recombination. Based on these two factors, i.e., better outcoupling efficiency of the transverse electric polarized light and an enhanced internal quantum efficiency, the performance characteristic of far-UVC LEDs emitting at 231 nm was further improved with a cw optical output power of 3.5 mW at 150 mA.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.

          Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Spontaneous polarization and piezoelectric constants of III-V nitrides

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The emergence and prospects of deep-ultraviolet light-emitting diode technologies

                Bookmark

                Author and article information

                Contributors
                Journal
                Applied Physics Letters
                AIP Publishing
                0003-6951
                1077-3118
                January 02 2023
                January 02 2023
                January 02 2023
                January 05 2023
                January 02 2023
                : 122
                : 1
                Article
                10.1063/5.0134253
                5c42935c-e3fe-4738-b2fd-bfb1f820480f
                © 2023
                History

                Comments

                Comment on this article