6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Construction of TiO2-covalent organic framework Z-Scheme hybrid through coordination bond for photocatalytic CO2 conversion

      , , , , , , ,
      Journal of Energy Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Porous, crystalline, covalent organic frameworks.

          Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production

                Bookmark

                Author and article information

                Journal
                Journal of Energy Chemistry
                Journal of Energy Chemistry
                Elsevier BV
                20954956
                January 2022
                January 2022
                : 64
                : 85-92
                Article
                10.1016/j.jechem.2021.04.053
                5bd42faf-9105-4799-a3e8-553015bb1e1b
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,335

                Cited by31

                Most referenced authors919