18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Telocytes in human epicardium

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The existence of the epicardial telocytes was previously documented by immunohistochemistry (IHC) or immunofluorescence. We have also demonstrated recently that telocytes are present in mice epicardium, within the cardiac stem-cell niches, and, possibly, they are acting as nurse cells for the cardiomyocyte progenitors. The rationale of this study was to show that telocytes do exist in human (sub)epicardium, too. Human autopsy hearts from 10 adults and 15 foetuses were used for conventional IHC for c-kit/CD117, CD34, vimentin, S-100, τ, Neurokinin 1, as well as using laser confocal microscopy. Tissue samples obtained by surgical biopsies from 10 adults were studied by digital transmission electron microscopy (TEM). Double immunolabelling for c-kit/CD34 and, for c-kit/vimentin suggests that in human beings, epicardial telocytes share similar immunophenotype features with myocardial telocytes. The presence of the telocytes in human epicardium is shown by TEM. Epicardial telocytes, like any of the telocytes are defined by telopodes, their cell prolongations, which are very long (several tens of μm), very thin (0.1–0.2 μm, below the resolving power of light microscopy) and with moniliform configuration. The interconnected epicardial telocytes create a 3D cellular network, connected with the 3D network of myocardial telocytes. TEM documented that telocytes release shed microvesicles or exocytotic multivesicular bodies in the intercellular space. The human epicardial telocytes have similar phenotype (TEM and IHC) with telocytes located among human working cardiomyocyte. It remains to be established the role(s) of telocytes in cardiac renewing/repair/regeneration processes, and also the pathological aspects induced by their ‘functional inhibition’, or by their variation in number. We consider telocytes as a real candidate for future developments of autologous cell-based therapy in heart diseases.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Adult cardiac stem cells are multipotent and support myocardial regeneration.

          The notion of the adult heart as terminally differentiated organ without self-renewal potential has been undermined by the existence of a subpopulation of replicating myocytes in normal and pathological states. The origin and significance of these cells has remained obscure for lack of a proper biological context. We report the existence of Lin(-) c-kit(POS) cells with the properties of cardiac stem cells. They are self-renewing, clonogenic, and multipotent, giving rise to myocytes, smooth muscle, and endothelial cells. When injected into an ischemic heart, these cells or their clonal progeny reconstitute well-differentiated myocardium, formed by blood-carrying new vessels and myocytes with the characteristics of young cells, encompassing approximately 70% of the ventricle. Thus, the adult heart, like the brain, is mainly composed of terminally differentiated cells, but is not a terminally differentiated organ because it contains stem cells supporting its regeneration. The existence of these cells opens new opportunities for myocardial repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction.

            Potential repair by cell grafting or mobilizing endogenous cells holds particular attraction in heart disease, where the meager capacity for cardiomyocyte proliferation likely contributes to the irreversibility of heart failure. Whether cardiac progenitors exist in adult myocardium itself is unanswered, as is the question whether undifferentiated cardiac precursor cells merely fuse with preexisting myocytes. Here we report the existence of adult heart-derived cardiac progenitor cells expressing stem cell antigen-1. Initially, the cells express neither cardiac structural genes nor Nkx2.5 but differentiate in vitro in response to 5'-azacytidine, in part depending on Bmpr1a, a receptor for bone morphogenetic proteins. Given intravenously after ischemia/reperfusion, cardiac stem cell antigen 1 cells home to injured myocardium. By using a Cre/Lox donor/recipient pair (alphaMHC-Cre/R26R), differentiation was shown to occur roughly equally, with and without fusion to host cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transfer of MicroRNAs by Embryonic Stem Cell Microvesicles

              Microvesicles are plasma membrane-derived vesicles released into the extracellular environment by a variety of cell types. Originally characterized from platelets, microvesicles are a normal constituent of human plasma, where they play an important role in maintaining hematostasis. Microvesicles have been shown to transfer proteins and RNA from cell to cell and they are also believed to play a role in intercellular communication. We characterized the RNA and protein content of embryonic stem cell microvesicles and show that they can be engineered to carry exogenously expressed mRNA and protein such as green fluorescent protein (GFP). We demonstrate that these engineered microvesicles dock and fuse with other embryonic stem cells, transferring their GFP. Additionally, we show that embryonic stem cells microvesicles contain abundant microRNA and that they can transfer a subset of microRNAs to mouse embryonic fibroblasts in vitro. Since microRNAs are short (21–24 nt), naturally occurring RNAs that regulate protein translation, our findings open up the intriguing possibility that stem cells can alter the expression of genes in neighboring cells by transferring microRNAs contained in microvesicles. Embryonic stem cell microvesicles may be useful therapeutic tools for transferring mRNA, microRNAs, protein, and siRNA to cells and may be important mediators of signaling within stem cell niches.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                August 2010
                13 July 2010
                : 14
                : 8
                : 2085-2093
                Affiliations
                [a ]Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy Bucharest, Romania
                [b ]‘Victor Babes,’ National Institute of Pathology Bucharest, Romania
                [c ]Department of Cell Biology, ‘Goldish’ Western University Arad, Romania
                [d ]Core Lab for Molecular and Structural Biology, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
                Author notes
                *Correspondence to: L. M. POPESCU, M.D., Ph.D., Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, P.O. Box 35–29, Bucharest 35, Romania. E-mail: LMP@ 123456jcmm.org
                Article
                10.1111/j.1582-4934.2010.01129.x
                3823000
                20629996
                5ae1e9fd-8cdd-4a68-bbb1-e71cbd97af5e
                © 2010 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
                History
                : 19 May 2010
                : 06 July 2010
                Categories
                Articles

                Molecular medicine
                telocytes,telopodes,epicardium,c-kit/cd117,shed vesicles,exosomes,cardiac repair,myocardial regeneration,cardiac progenitors,cardiac niches,stem cells

                Comments

                Comment on this article