30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genome-wide analysis of PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) genes in plants reveals the eudicot-wide PDAT gene expansion and altered selective pressures acting on the core eudicot PDAT paralogs.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) is an enzyme that catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3-position of sn-1,2-diacylglyerol, thus forming triacylglycerol and a lysophospholipid. Although the importance of PDAT in triacylglycerol biosynthesis has been illustrated in some previous studies, the evolutionary relationship of plant PDATs has not been studied in detail. In this study, we investigated the evolutionary relationship of the PDAT gene family across the green plants using a comparative phylogenetic framework. We found that the PDAT candidate genes are present in all examined green plants, including algae, lowland plants (a moss and a lycophyte), monocots, and eudicots. Phylogenetic analysis revealed the evolutionary division of the PDAT gene family into seven major clades. The separation is supported by the conservation and variation in the gene structure, protein properties, motif patterns, and/or selection constraints. We further demonstrated that there is a eudicot-wide PDAT gene expansion, which appears to have been mainly caused by the eudicot-shared ancient gene duplication and subsequent species-specific segmental duplications. In addition, selection pressure analyses showed that different selection constraints have acted on three core eudicot clades, which might enable paleoduplicated PDAT paralogs to either become nonfunctionalized or develop divergent expression patterns during evolution. Overall, our study provides important insights into the evolution of the plant PDAT gene family and explores the evolutionary mechanism underlying the functional diversification among the core eudicot PDAT paralogs.

          Related collections

          Author and article information

          Journal
          Plant Physiol.
          Plant physiology
          American Society of Plant Biologists (ASPB)
          1532-2548
          0032-0889
          Mar 2015
          : 167
          : 3
          Affiliations
          [1 ] Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
          [2 ] Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 randall.weselake@ualberta.ca.
          Article
          pp.114.253658
          10.1104/pp.114.253658
          4348769
          25585619
          5aab20e9-9b54-4bf8-8338-6655323eca1e
          History

          Comments

          Comment on this article