36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two Novel Transcriptional Regulators Are Essential for Infection-related Morphogenesis and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1), an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA) in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus.

          Author Summary

          Magnaporthe oryzae, the causal agent of rice blast disease, is an important model fungal pathogen for understanding the molecular basis of plant-fungus interactions. In M. oryzae, the conserved cAMP/PKA signaling pathway has been demonstrated to be crucial for regulating infection-related morphogenesis and pathogenicity, including the control of sporulation and appressorium formation. In this study, we report the identification of two novel pathogenicity-related genes, MoSOM1 and MoCDTF1, by T-DNA insertional mutagenesis. Our results show that MoSOM1 or MoCDTF1 are essential for sporulation, appressorium formatiom and pathogenicity, and also play a key role in hyphal growth, melanin pigmentation and cell surface hydrophobicity. Nuclear localization sequences and conserved domains of the MoSom1 and MoCdtf1 proteins are crucial for their biological function. MoSom1 interacts physically with the transcription factors MoCdtf1 and MoStu1. We also show evidence that MoSom1 has the capacity to interact with CpkA, suggesting that MoSom1 may act downstream of the cAMP/PKA signaling pathway to regulate infection-related morphogenesis and pathogenicity in M. oryzae. Our studies extend the current understanding of downstream components of the conserved cAMP/PKA pathway and its precise role in regulating infection-related development and cellular differentiation by M. oryzae.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: not found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea.

            The blast fungus Magnaporthe grisea causes a serious disease on a wide variety of grasses including rice, wheat, and barley. Rice blast is the most serious disease of cultivated rice and therefore poses a threat to the world's most important food security crop. Here, I review recent progress toward understanding the molecular biology of plant infection by M. grisea, which involves development of a specialized cell, the appressorium. This dome-shaped cell generates enormous turgor pressure and physical force, allowing the fungus to breach the host cuticle and invade plant tissue. The review also considers the role of avirulence genes in M. grisea and the mechanisms by which resistant rice cultivars are able to perceive the fungus and defend themselves. Finally, the likely mechanisms that promote genetic diversity in M. grisea and our current understanding of the population structure of the blast fungus are evaluated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea.

              Differential cDNA cloning was used to identify genes expressed during infectious growth of the fungal pathogen Magnaporthe grisea in its host, the rice plant. We characterized one of these genes, MPG1, in detail. Using a novel assay to determine the proportion of fungal biomass present in the plant, we determined that the MPG1 transcript was 60-fold more abundant during growth in the plant than in culture. Mpg1 mutants have a reduced ability to cause disease symptoms that appears to result from an impaired ability to undergo appressorium formation. MPG1 mRNA was highly abundant very early in plant infection concomitant with appressorium formation and was also abundant at the time of symptom development. The MPG1 mRNA was also expressed during conidiation and in mycelial cultures starved for nitrogen or carbon. MPG1 potentially encodes a small, secreted, cysteine-rich, moderately hydrophobic protein with the characteristics of a fungal hydrophobin. Consistent with the role of the MPG1 gene product as a hydrophobin, Mpg1 mutants show an "easily wettable" phenotype. Our results suggest that hydrophobins may have a role in the elaboration of infective structures by fungi and may fulfill other functions in fungal phytopathogenesis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2011
                December 2011
                1 December 2011
                : 7
                : 12
                : e1002385
                Affiliations
                [1 ]State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
                [2 ]School of Biosciences, University of Exeter, Exeter, United Kingdom
                University of Melbourne, Australia
                Author notes

                Conceived and designed the experiments: XY ZW. Performed the experiments: XY YL XFY CW YQ DK ZM ZW. Analyzed the data: XY ZW YL NJT. Wrote the paper: XY ZW NJT.

                Article
                PPATHOGENS-D-11-01451
                10.1371/journal.ppat.1002385
                3228794
                22144889
                5aa50794-c850-4366-8a8e-cccbd64658eb
                Yan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 July 2011
                : 2 October 2011
                Page count
                Pages: 24
                Categories
                Research Article
                Biology
                Genetics
                Gene Expression
                Gene Function
                Genetic Mutation
                Genetics of Disease
                Microbiology
                Mycology
                Fungal Reproduction
                Fungi
                Spores
                Host-Pathogen Interaction
                Microbial Growth and Development
                Microbial Pathogens
                Pathogenesis
                Molecular Cell Biology
                Signal Transduction

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article