Horn clauses and first-order resolution are commonly used for the implementation of type classes in Haskell. Recently, several core- cursive extensions to type class resolution have been proposed, with the common goal of allowing (co)recursive dictionary construction for those cases when resolution does not terminate. This paper shows, for the first time, that corecursive type class resolution and its recent extensions are coinductively sound with respect to the greatest Herbrand models of logic programs and that they are inductively unsound with respect to the least Herbrand models.