21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Obsessive-Compulsive Symptoms Among Children in the Adolescent Brain and Cognitive Development Study: Clinical, Cognitive, and Brain Connectivity Correlates

      , , ,
      Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: not found
          • Article: not found

          lavaan: AnRPackage for Structural Equation Modeling

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            pROC: an open-source package for R and S+ to analyze and compare ROC curves

            Background Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface. Results With data previously imported into the R or S+ environment, the pROC package builds ROC curves and includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows how to perform a typical ROC analysis with pROC. Conclusions pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation. pROC is available in two versions: in the R programming language or with a graphical user interface in the S+ statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also distributed through the CRAN and CSAN public repositories, facilitating its installation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Fitting Linear Mixed-Effects Models Using lme4

              Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer. Journal of Statistical Software, 67 (1) ISSN:1548-7660
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
                Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
                Elsevier BV
                24519022
                April 2021
                April 2021
                : 6
                : 4
                : 399-409
                Article
                10.1016/j.bpsc.2020.10.019
                33495121
                5a2b500b-cf34-45c4-9852-25218146577f
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,954

                Cited by15

                Most referenced authors2,001