30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PD1/PDL1 inhibitors for the treatment of advanced urothelial bladder cancer

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Until recently, systemic chemotherapy was the only option for treating bladder cancer and outcomes remained dismal. After a long gap of no progress for 40 years, immuno-therapy with checkpoint inhibitors (PDL1 and PD1) has revolutionized the treatment paradigm of bladder cancer, with five approved agents to treat platinum-refractory bladder cancer since the first approval of atezolizumab in May 2016.

          Methods

          This review summarizes the most recent data on approved checkpoint inhibitors currently used in management of advanced bladder cancer. Early- and late-phase trials of the five checkpoint inhibitors (pembrolizumab, nivolumab, atezolizumab, durvalumab, and avelumab) in advanced bladder cancer are reviewed in detail. This review also describes the potential application of PD1/PDL1 inhibitors in adjuvant and neoadjuvant settings and non-muscle-invasive bladder cancer, as well as with radiation in muscle-invasive bladder cancer treatment. The role of PDL1 and tumor-mutation burden and clinical considerations in choosing a particular immunotherapy are also discussed.

          Results

          The approved checkpoint inhibitors (PD1 and PDL1 inhibitors) have similar efficacy and safety profiles in metastatic platinum-refractory bladder cancer, but they vary in dose and frequency and cost burden. However, only pembrolizumab has shown superiority over standard chemotherapy in a randomized Phase III setting so far. In addition, in the first-line setting for cisplatin-ineligible patients, both pembrolizumab and atezolizumab are US Food and Drug Administration-approved and well tolerated. There is a lack of consensus on the utility of testing for PDL1 as a predictive biomarker, as patients with no PDL1 expression also derive some clinical benefit. Tumor-mutation burden is another predictive biomarker, but needs further validation.

          Conclusion

          Immunotherapy has offered a glimmer of hope to patients with bladder cancer. The current landscape is rapidly evolving, with novel immunotherapy-combination trials to improve outcomes further and evaluate predictive biomarkers to help identify patients most likely to benefit from such therapies.

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Signatures of mutational processes in human cancer

          All cancers are caused by somatic mutations. However, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here, we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer with potential implications for understanding of cancer etiology, prevention and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.

            Immune checkpoint inhibitors, which unleash a patient's own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non-small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti-PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti-PD-1 therapy. Copyright © 2015, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors

              Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis induce sustained clinical responses in a sizeable minority of cancer patients. Here, we show that primary resistance to ICI can be due to abnormal gut microbiome composition. Antibiotics (ATB) inhibited the clinical benefit of ICI in patients with advanced cancer. Fecal microbiota transplantation (FMT) from cancer patients who responded to ICI (but not from non-responding patients) into germ-free or ATB-treated mice ameliorated the antitumor effects of PD-1 blockade. Metagenomics of patient stools at diagnosis revealed correlations between clinical responses to ICI and the relative abundance of Akkermansia muciniphila. Oral supplementation with A. muciniphila post-FMT with non-responder feces restored the efficacy of PD-1 blockade in an IL-12-dependent manner, by increasing the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into tumor beds.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2018
                19 September 2018
                : 11
                : 5973-5989
                Affiliations
                [1 ]Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota
                [2 ]Masonic Cancer Center, University of Minnesota, guptash@ 123456umn.edu
                [3 ]Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA, guptash@ 123456umn.edu
                Author notes
                Correspondence: Shilpa Gupta, Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA, 420 Delaware Street Southeast – MMC 480, Minneapolis, MN 55455, USA, Tel +1 612 624 6520, Fax +1 612 625 6919, Email guptash@ 123456umn.edu
                Article
                ott-11-5973
                10.2147/OTT.S135157
                6157986
                30275703
                59fe71df-1db5-4dd8-aafc-80293fcd5859
                © 2018 Stenehjem et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Oncology & Radiotherapy
                pembrolizumab,checkpoint inhibitors,urothelial cancer,tumor-mutation burden,bladder cancer,immunotherapy

                Comments

                Comment on this article