12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria).

      Journal of Bacteriology
      Adenosine, analogs & derivatives, metabolism, Archaea, Gram-Negative Anaerobic Bacteria, Guanosine, Phylogeny, Pseudouridine, RNA Processing, Post-Transcriptional, RNA, Bacterial, RNA, Transfer, chemistry, Ribonucleosides, Thymidine

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nucleoside modification has been studied in unfractionated tRNA from 11 thermophilic archaea (archaebacteria), including phylogenetically diverse representatives of thermophilic methanogens and sulfur-metabolizing hyperthermophiles which grow optimally in the temperature range of 56 (Thermoplasma acidophilum) to 105 degrees C (Pyrodictium occultum), and for comparison from the most thermophilic bacterium (eubacterium) known, Thermotoga maritima (80 degrees C). Nine nucleosides are found to be unique to the archaea, six of which are structurally novel in being modified both in the base and by methylation in ribose and occur primarily in tRNA from the extreme thermophiles in the Crenarchaeota of the archaeal phylogenetic tree. 2-Thiothymine occurs in tRNA from Thermococcus sp., and constitutes the only known occurrence of the thymine moiety in archaeal RNA, in contrast to its near-ubiquitous presence in tRNA from bacteria and eukarya. A total of 33 modified nucleosides are rigorously characterized in archaeal tRNA in the present study, demonstrating that the structural range of posttranscriptional modifications in archaeal tRNA is more extensive than previously known. From a phylogenetic standpoint, certain tRNA modifications occur in the archaea which are otherwise unique to either the bacterial or eukaryal domain, although the overall patterns of modification are more typical of eukaryotes than bacteria.

          Related collections

          Author and article information

          Comments

          Comment on this article