5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Measurement of Loudness Discomfort Levels as a Test for Hyperacusis: Test-Retest Reliability and Its Clinical Value

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          The aims of this study were to investigate the test-retest reliability of measurements of loudness discomfort levels (LDLs), to suggest cut-off values for diagnosing patients with hyperacusis, and to evaluate the clinical value of-LDL measurements as a test for monitoring hyperacusis.

          Methods

          For the test-retest reliability of LDL measurements (study 1), a total of 68 patients who sought consultations at our clinic were subcategorized into four groups: patients with tinnitus (group 1), tinnitus and hearing loss (group 2), hyperacusis (group 3), and normal controls (group 4). Inter-hour and inter-day test-retest reliability values using different stimuli were investigated. For study 2, the clinical value of LDL measurements using pure tone stimuli was analyzed by comparing changes after sound generator use in patients with hyperacusis.

          Results

          In study 1, the group 3 patients showed significantly lower LDLs than the other groups. High test-retest reliability of LDL tests was demonstrated, regardless of the type of stimulus used. The cut-off values for screening patients with hyperacusis were 90 dB HL using pure tone stimuli and 62 dB HL using white-band noise stimuli. In study 2, significantly increased LDLs were correlated with improved symptoms and improved scores on tinnitus questionnaires after sound generator use, indicating that LDL measurement is a reliable test for monitoring hyperacusis during an intervention.

          Conclusion

          LDL measurement is a reliable diagnostic tool to reflect the condition of hyperacusis, especially during the course of treatment.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Phenotypic Characteristics of Hyperacusis in Tinnitus

          Background Many people with tinnitus also suffer from hyperacusis. Both clinical and basic scientific data indicate an overlap in pathophysiologic mechanisms. In order to further elucidate the interplay between tinnitus and hyperacusis we compared clinical and demographic characteristics of tinnitus patients with and without hyperacusis by analyzing a large sample from an international tinnitus patient database. Materials The default dataset import [November 1st, 2012] from the Tinnitus Research Initiative [TRI] Database was used for analyses. Hyperacusis was defined by the question “Do sounds cause you pain or physical discomfort?” of the Tinnitus Sample Case History Questionnaire. Patients who answered this question with “yes” were contrasted with “no”-responders with respect to 41 variables. Results 935 [55%] out of 1713 patients were characterized as hyperacusis patients. Hyperacusis in tinnitus was associated with younger age, higher tinnitus-related, mental and general distress; and higher rates of pain disorders and vertigo. In relation to objective audiological assessment patients with hyperacusis rated their subjective hearing function worse than those without hyperacusis. Similarly the tinnitus pitch was rated higher by hyperacusis patients in relation to the audiometrically determined tinnitus pitch. Among patients with tinnitus and hyperacusis the tinnitus was more frequently modulated by external noise and somatic maneuvers, i.e., exposure to environmental sounds and head and neck movements change the tinnitus percept. Conclusions Our findings suggest that the comorbidity of hyperacusis is a useful criterion for defining a sub-type of tinnitus which is characterized by greater need of treatment. The higher sensitivity to auditory, somatosensory and vestibular input confirms the notion of an overactivation of an unspecific hypervigilance network in tinnitus patients with hyperacusis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurophysiological approach to tinnitus patients.

            The principal postulate of the neurophysiological model of tinnitus is that all levels of the auditory pathways and several nonauditory systems play essential roles in each case of tinnitus, stressing the dominance of nonauditory systems in determining the level of tinnitus annoyance. Thus it has been proposed to treat tinnitus by inducing and facilitating habituation to the tinnitus signal. The goal is to reach the stage at which, although patients may perceive tinnitus as unchanged when they focus on it, they are otherwise not aware of tinnitus. Furthermore, even when perceived, tinnitus does not evoke annoyance. Habituation is achieved by directive counseling combined with low-level, broad-band noise generated by wearable generators, and environmental sounds, according to a specific protocol. For habituation to occur, it is imperative to avoid masking tinnitus by these sounds. Since 1991, > 500 tinnitus patients have been seen in our center. About 40% exhibited hyperacusis to varying degrees. A survey of > 100 patients revealed > 80% of significant improvement in groups of patients treated with the full protocol involving counseling and the use of noise generators. Notably, in patients who received counseling only, the success rate was < 20%. The improvement in hyperacusis was observed in approximately 90% of treated patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Audiometric Characteristics of Hyperacusis Patients

              Hyperacusis is a frequent auditory disorder where sounds of normal volume are perceived as too loud or even painfully loud. There is a high degree of co-morbidity between hyperacusis and tinnitus, most hyperacusis patients also have tinnitus, but only about 30–40% of tinnitus patients also show symptoms of hyperacusis. In order to elucidate the mechanisms of hyperacusis, detailed measurements of loudness discomfort levels (LDLs) across the hearing range would be desirable. However, previous studies have only reported LDLs for a restricted frequency range, e.g., from 0.5 to 4 kHz or from 1 to 8 kHz. We have measured audiograms and LDLs in 381 patients with a primary complaint of hyperacusis for the full standard audiometric frequency range from 0.125 to 8 kHz. On average, patients had mild high-frequency hearing loss, but more than a third of the tested ears had normal hearing thresholds (HTs), i.e., ≤20 dB HL. LDLs were found to be significantly decreased compared to a normal-hearing reference group, with average values around 85 dB HL across the frequency range. However, receiver operating characteristic analysis showed that LDL measurements are neither sensitive nor specific enough to serve as a single test for hyperacusis. There was a moderate positive correlation between HTs and LDLs (r = 0.36), i.e., LDLs tended to be higher at frequencies where hearing loss was present, suggesting that hyperacusis is unlikely to be caused by HT increase, in contrast to tinnitus for which hearing loss is a main trigger. Moreover, our finding that LDLs are decreased across the full range of audiometric frequencies, regardless of the pattern or degree of hearing loss, indicates that hyperacusis might be due to a generalized increase in auditory gain. Tinnitus on the other hand is thought to be caused by neuroplastic changes in a restricted frequency range, suggesting that tinnitus and hyperacusis might not share a common mechanism.
                Bookmark

                Author and article information

                Journal
                Clin Exp Otorhinolaryngol
                Clin Exp Otorhinolaryngol
                CEO
                Clinical and Experimental Otorhinolaryngology
                Korean Society of Otorhinolaryngology-Head and Neck Surgery
                1976-8710
                2005-0720
                February 2022
                10 February 2022
                : 15
                : 1
                : 84-90
                Affiliations
                [1 ]Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
                [2 ]Department of Otorhinolaryngology-Head and Neck Surgery, Dr. Paulino J. Garcia Memorial Research and Medical Center, Nueva Ecija, Philippines
                [3 ]Department of Otorhinolaryngology-Head and Neck Surgery, St. Luke’s Medical Center, Quezon City, Philippines
                Author notes
                Corresponding author: Shi Nae Park Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6215, Fax: +82-2-595-1354 E-mail: snparkmd@ 123456catholic.ac.kr
                Author information
                http://orcid.org/0000-0002-0699-1592
                http://orcid.org/0000-0001-8589-4119
                http://orcid.org/0000-0001-7728-1232
                http://orcid.org/0000-0003-3634-9821
                http://orcid.org/0000-0002-7614-9413
                Article
                ceo-2021-00318
                10.21053/ceo.2021.00318
                8901946
                35144329
                5864b314-d77a-4040-86ea-3ae360a92d5d
                Copyright © 2022 by Korean Society of Otorhinolaryngology-Head and Neck Surgery

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 February 2021
                : 4 July 2021
                : 14 July 2021
                Categories
                Original Article

                Otolaryngology
                hyperacusis,loudness perception,sound generator
                Otolaryngology
                hyperacusis, loudness perception, sound generator

                Comments

                Comment on this article