25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A web-based low carbohydrate diet intervention significantly improves glycaemic control in adults with type 2 diabetes: results of the T2Diet Study randomised controlled trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/objectives

          In people with type 2 diabetes mellitus (T2DM), low carbohydrate diets (LCD), defined as 10–<26% total energy intake from carbohydrate, have indicated improved glycaemic control and clinical outcomes. Web-based interventions can help overcome significant challenges of accessibility and availability of dietary education and support for T2DM. No previous study had evaluated a web-based LCD intervention using a randomised controlled trial (RCT) design. The objective of this study was to assess whether a web-based LCD programme provided in conjunction with standard care improves glycaemic control in adults with T2DM.

          Subjects/methods

          A 16-week parallel RCT was conducted remotely during Covid-19 among the general community, recruiting adults with T2DM not on insulin aged 40–89 years. Participants were randomly assigned (1:1) to standard care plus the web-based T2Diet healthy LCD education programme (intervention) or standard care only (control). The primary outcome was haemoglobin A1c (HbA1c). Secondary outcomes were weight, body mass index (BMI), anti-glycaemic medication, dietary intake, and self-efficacy. Blinded data analysis was conducted by intention-to-treat.

          Results

          Ninety-eight participants were enrolled, assigning 49 to each group, with 87 participants ( n = 40 intervention; n = 47 control) included in outcome analysis. At 16 weeks, there was a statistically significant between-group difference favouring the intervention group, with reductions in HbA1c –0.65% (95% CI: –0.99 to –0.30; p < 0.0001), weight –3.26 kg ( p < 0.0001), BMI –1.11 kg/m 2 ( p < 0.0001), and anti-glycaemic medication requirements –0.40 ( p < 0.0001), with large effect sizes Cohen’s d > 0.8.

          Conclusion

          This study demonstrated that as an adjunct to standard care, the web-based T2Diet programme significantly improved glycaemic control and clinical outcomes in adults with T2DM. In addition, the results highlight the potential to improve access and availability for people with T2DM to achieve glycaemic control and improved health through web-based dietary education and support.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study.

          To determine the relation between exposure to glycaemia over time and the risk of macrovascular or microvascular complications in patients with type 2 diabetes. Prospective observational study. 23 hospital based clinics in England, Scotland, and Northern Ireland. 4585 white, Asian Indian, and Afro-Caribbean UKPDS patients, whether randomised or not to treatment, were included in analyses of incidence; of these, 3642 were included in analyses of relative risk. Primary predefined aggregate clinical outcomes: any end point or deaths related to diabetes and all cause mortality. Secondary aggregate outcomes: myocardial infarction, stroke, amputation (including death from peripheral vascular disease), and microvascular disease (predominantly retinal photo-coagulation). Single end points: non-fatal heart failure and cataract extraction. Risk reduction associated with a 1% reduction in updated mean HbA(1c) adjusted for possible confounders at diagnosis of diabetes. The incidence of clinical complications was significantly associated with glycaemia. Each 1% reduction in updated mean HbA(1c) was associated with reductions in risk of 21% for any end point related to diabetes (95% confidence interval 17% to 24%, P<0.0001), 21% for deaths related to diabetes (15% to 27%, P<0.0001), 14% for myocardial infarction (8% to 21%, P<0.0001), and 37% for microvascular complications (33% to 41%, P<0.0001). No threshold of risk was observed for any end point. In patients with type 2 diabetes the risk of diabetic complications was strongly associated with previous hyperglycaemia. Any reduction in HbA(1c) is likely to reduce the risk of complications, with the lowest risk being in those with HbA(1c) values in the normal range (<6.0%).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Eating Attitudes Test: psychometric features and clinical correlates

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report

              This Consensus Report is intended to provide clinical professionals with evidence-based guidance about individualizing nutrition therapy for adults with diabetes or prediabetes. Strong evidence supports the efficacy and cost-effectiveness of nutrition therapy as a component of quality diabetes care, including its integration into the medical management of diabetes; therefore, it is important that all members of the health care team know and champion the benefits of nutrition therapy and key nutrition messages. Nutrition counseling that works toward improving or maintaining glycemic targets, achieving weight management goals, and improving cardiovascular risk factors (e.g., blood pressure, lipids, etc.) within individualized treatment goals is recommended for all adults with diabetes and prediabetes. Though it might simplify messaging, a “one-size-fits-all” eating plan is not evident for the prevention or management of diabetes, and it is an unrealistic expectation given the broad spectrum of people affected by diabetes and prediabetes, their cultural backgrounds, personal preferences, co-occurring conditions (often referred to as comorbidities), and socioeconomic settings in which they live. Research provides clarity on many food choices and eating patterns that can help people achieve health goals and quality of life. The American Diabetes Association (ADA) emphasizes that medical nutrition therapy (MNT) is fundamental in the overall diabetes management plan, and the need for MNT should be reassessed frequently by health care providers in collaboration with people with diabetes across the life span, with special attention during times of changing health status and life stages (1–3). This Consensus Report now includes information on prediabetes, and previous ADA nutrition position statements, the last of which was published in 2014 (4), did not. Unless otherwise noted, the research reviewed was limited to those studies conducted in adults diagnosed with prediabetes, type 1 diabetes, and/or type 2 diabetes. Nutrition therapy for children with diabetes or women with gestational diabetes mellitus is not addressed in this review but is covered in other ADA publications, specifically Standards of Medical Care in Diabetes (5,6). Data Sources, Searches, and Study Selection The authors of this report were chosen following a national call for experts to ensure diversity of the members both in professional interest and cultural background, including a person living with diabetes who served as a patient advocate. An outside market research company was used to conduct the literature search and was paid using ADA funds. The authors convened in person for one group meeting and actively participated in monthly teleconference calls between February and November 2018. Focused teleconference calls, email, and web-based collaboration were also used to reach consensus on final recommendations between November 2018 and January 2019. The 2014 position statement (4) was used as a starting point, and a search was conducted on PubMed for studies published in English between 1 January 2014 and 28 February 2018 to provide the updated evidence of nutrition therapy interventions in nonhospitalized adults with prediabetes and type 1 and type 2 diabetes. Details on the keywords and the search strategy are reported in the Supplementary Data, emphasizing randomized controlled trials (RCTs), systematic reviews, and meta-analyses of RCTs. An exception was made to the inclusion criteria for the use of meal studies for the insulin dosing section. In addition to the search results, in select cases the authors identified relevant research to include in reaching consensus. The consensus report was peer reviewed (see acknowledgments) and suggestions incorporated as deemed appropriate by the authors. Though evidence-based, the recommendations presented are the informed, expert opinions of the authors after consensus was reached through presentation and discussion of the evidence. EFFECTIVENESS OF DIABETES NUTRITION THERAPY Consensus recommendations Refer adults living with type 1 or type 2 diabetes to individualized, diabetes-focused MNT at diagnosis and as needed throughout the life span and during times of changing health status to achieve treatment goals. Coordinate and align the MNT plan with the overall management strategy, including use of medications, physical activity, etc., on an ongoing basis. Refer adults with diabetes to comprehensive diabetes self-management education and support (DSMES) services according to national standards. Diabetes-focused MNT is provided by a registered dietitian nutritionist/registered dietitian (RDN), preferably one who has comprehensive knowledge and experience in diabetes care. Refer people with prediabetes and overweight/obesity to an intensive lifestyle intervention program that includes individualized goal-setting components, such as the Diabetes Prevention Program (DPP) and/or to individualized MNT. Diabetes MNT is a covered Medicare benefit and should be adequately reimbursed by insurance and other payers or bundled in evolving value-based care and payment models. DPP-modeled intensive lifestyle interventions and individualized MNT for prediabetes should be covered by third-party payers or bundled in evolving value-based care and payment models. How is diabetes nutrition therapy defined and provided? The National Academy of Medicine (formerly the Institute of Medicine) broadly defines nutrition therapy as the treatment of a disease or condition through the modification of nutrient or whole-food intake (7). To complement diabetes nutrition therapy, members of the health care team can and should provide evidence-based guidance that allows people with diabetes to make healthy food choices that meet their individual needs and optimize their overall health. The Dietary Guidelines for Americans (DGA) 2015–2020 provide a basis for healthy eating for all Americans and recommend that people consume a healthy eating pattern that accounts for all foods and beverages within an appropriate calorie level (8). For people with diabetes, recommendations that differ from the DGA are highlighted in this report. MNT is an evidence-based application of the nutrition care process provided by an RDN and is the legal definition of nutrition counseling by an RDN in the U.S. (9–12). Essential components of MNT are assessment, nutrition diagnosis, interventions (e.g., education and counseling), and monitoring with ongoing follow-up to support long-term lifestyle changes, evaluate outcomes, and modify interventions as needed (9,10). The goals of nutrition therapy are described in Table 1. Table 1 Goals of nutrition therapy • To promote and support healthful eating patterns, emphasizing a variety of nutrient-dense foods in appropriate portion sizes, in order to improve overall health and specifically to:  ○ Improve A1C, blood pressure, and cholesterol levels (goals differ for individuals based on age, duration of diabetes, health history, and other present health conditions. Further recommendations for individualization of goals can be found in the ADA Standards of Medical Care in Diabetes [345])  ○ Achieve and maintain body weight goals  ○ Delay or prevent complications of diabetes • To address individual nutrition needs based on personal and cultural preferences, health literacy and numeracy, access to healthful food choices, willingness and ability to make behavioral changes, as well as barriers to change • To maintain the pleasure of eating by providing positive messages about food choices, while limiting food choices only when indicated by scientific evidence • To provide the individual with diabetes with practical tools for day-to-day meal planning The unique academic preparation, training, skills, and expertise make the RDN the preferred member of the health care team to provide diabetes MNT and leadership in interprofessional team-based nutrition and diabetes care (1,9,13–18). Although certification (such as Certified Diabetes Educator, Board Certified-Advanced Diabetes Management) is not required, ideally the RDN will have comprehensive knowledge and experience in diabetes care and prevention (9,17). Detailed guidance for the RDN to obtain the expert knowledge and experience can be found in the Academy of Nutrition and Dietetics Standards of Practice and Standards of Professional Performance (12). Health care professionals can use the education algorithm suggested by ADA, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics (1) that defines and describes the four critical times to assess, provide, and adjust care. The algorithm is intended for use by the RDN and the interprofessional team for determining how and when to deliver diabetes education and nutrition services. The number of encounters the person with diabetes might have with the RDN is described in Table 2 (9). Table 2 Academy of Nutrition and Dietetics evidence-based nutrition practice guidelines–recommended structure for the implementation of MNT for adults with diabetes (9) Initial series of MNT encounters: The RDN should implement three to six MNT encounters during the first 6 months following diagnosis and determine if additional MNT encounters are needed based on an individualized assessment. MNT follow-up encounters: The RDN should implement a minimum of one annual MNT follow-up encounter. In addition to diabetes MNT, DSMES is important for people with diabetes to improve cardiometabolic and microvascular outcomes in a disease that is largely self-managed (1,19–23). DSMES includes the ongoing process that facilitates the knowledge, skills, and abilities necessary for diabetes self-care throughout the life span, with nutrition as one of the core curriculum topics taught in comprehensive programs (21). Is MNT effective in improving outcomes? Reported hemoglobin A1c (A1C) reductions from MNT can be similar to or greater than what would be expected with treatment using currently available medication for type 2 diabetes (9). Strong evidence supports the effectiveness of MNT interventions provided by RDNs for improving A1C, with absolute decreases up to 2.0% (in type 2 diabetes) and up to 1.9% (in type 1 diabetes) at 3–6 months. Ongoing MNT support is helpful in maintaining glycemic improvements (9). Cost-effectiveness of lifestyle interventions and MNT for the prevention and management of diabetes has been documented in multiple studies (12,17,24,25). The National Academy of Medicine recommends individualized MNT, provided by an RDN upon physician referral, as part of the multidisciplinary approach to diabetes care (7). Diabetes MNT is a covered Medicare benefit and should also be adequately reimbursed by insurance and other payers, or bundled in evolving value-based care and payment models, because it can result in improved outcomes such as reduced A1C and cost savings (12,17,25). What nutrition therapy interventions best help people with prediabetes prevent or delay the development of type 2 diabetes? The strongest evidence for type 2 diabetes prevention comes from several studies, including the DPP (26–28). The DPP demonstrated that an intensive lifestyle intervention resulting in weight loss could reduce the incidence of type 2 diabetes for adults with overweight/obesity and impaired glucose tolerance by 58% over 3 years (26). Follow-up of three large studies of lifestyle intervention for diabetes prevention has shown sustained reduction in the rate of conversion to type 2 diabetes: 43% reduction at 20 years in the Da Qing Diabetes Prevention Study (29); 43% reduction at 7 years in the Finnish Diabetes Prevention Study (DPS) (30); and 34% reduction at 10 years (28) and 27% reduction at 15 years extended follow-up of the DPP (31) in the U.S. Diabetes Prevention Program Outcomes Study (DPPOS). The follow-up of the Da Qing study also demonstrated a reduction in cardiovascular and all-cause mortality (32). Substantial evidence indicates that individuals with prediabetes should be referred to an intensive behavioral lifestyle intervention program modeled on the DPP and/or to individualized MNT typically provided by an RDN with the goals of improving eating habits, increasing moderate-intensity physical activity to at least 150 min per week, and achieving and maintaining 7–10% loss of initial body weight if needed (14,17,33,34). More intensive intervention programs are the most effective in decreasing diabetes incidence and improving cardiovascular disease (CVD) risk factors (35). Both DPP-modeled intensive lifestyle interventions and individualized MNT for prediabetes have demonstrated cost-effectiveness (17,36) and therefore should be covered by third-party payers or bundled in evolving value-based care and payment models (25). To make diabetes prevention programs more accessible, digital health tools are an area of increasing interest in the public and private sectors. Preliminary research studies support that the delivery of diabetes prevention lifestyle interventions through technology-enabled platforms and digital health tools can result in weight loss, improved glycemia, and reduced risk for diabetes and CVD, although more rigorous studies are needed (37–44). MACRONUTRIENTS Consensus recommendations Evidence suggests that there is not an ideal percentage of calories from carbohydrate, protein, and fat for all people with or at risk for diabetes; therefore, macronutrient distribution should be based on individualized assessment of current eating patterns, preferences, and metabolic goals. When counseling people with diabetes, a key strategy to achieve glycemic targets should include an assessment of current dietary intake followed by individualized guidance on self-monitoring carbohydrate intake to optimize meal timing and food choices and to guide medication and physical activity recommendations. People with diabetes and those at risk for diabetes are encouraged to consume at least the amount of dietary fiber recommended for the general public; increasing fiber intake, preferably through food (vegetables, pulses [beans, peas, and lentils], fruits, and whole intact grains) or through dietary supplement, may help in modestly lowering A1C. Do macronutrient needs differ for people with diabetes compared with the general population? Although numerous studies have attempted to identify the optimal mix of macronutrients for the eating plans of people with diabetes, a systematic review (45) found that there is no ideal mix that applies broadly and that macronutrient proportions should be individualized. It has been observed that people with diabetes, on average, eat about the same proportions of macronutrients as the general public: ∼45% of their calories from carbohydrate (see Table 3), ∼36–40% of calories from fat, and the remainder (∼16–18%) from protein (46–48). Regardless of the macronutrient mix, total energy intake should be appropriate to attain weight management goals. Further, individualization of the macronutrient composition will depend on the status of the individual, including metabolic goals (glycemia, lipid profile, etc.), physical activity, food preferences, and availability. Table 3 Eating patterns reviewed for this report Type of eating pattern Description Potential benefits reported* USDA Dietary Guidelines For Americans (DGA) (8) Emphasizes a variety of vegetables from all of the subgroups; fruits, especially whole fruits; grains, at least half of which are whole intact grains; lower-fat dairy; a variety of protein foods; and oils. This eating pattern limits saturated fats and trans fats, added sugars, and sodium. DGA added to the table for reference; not reviewed as part of this Consensus Report Mediterranean-style (69,76,85–91) Emphasizes plant-based food (vegetables, beans, nuts and seeds, fruits, and whole intact grains); fish and other seafood; olive oil as the principal source of dietary fat; dairy products (mainly yogurt and cheese) in low to moderate amounts; typically fewer than 4 eggs/week; red meat in low frequency and amounts; wine in low to moderate amounts; and concentrated sugars or honey rarely. • Reduced risk of diabetes • A1C reduction • Lowered triglycerides • Reduced risk of major cardiovascular events Vegetarian or vegan (77–80,92–99) The two most common approaches found in the literature emphasize plant-based vegetarian eating devoid of all flesh foods but including egg (ovo) and/or dairy (lacto) products, or vegan eating devoid of all flesh foods and animal-derived products. • Reduced risk of diabetes • A1C reduction • Weight loss • Lowered LDL-C and non–HDL-C Low-fat (26,45,80,83,100–106) Emphasizes vegetables, fruits, starches (e.g., breads/crackers, pasta, whole intact grains, starchy vegetables), lean protein sources (including beans), and low-fat dairy products. In this review, defined as total fat intake ≤30% of total calories and saturated fat intake ≤10%. • Reduced risk of diabetes • Weight loss Very low-fat (107–109) Emphasizes fiber-rich vegetables, beans, fruits, whole intact grains, nonfat dairy, fish, and egg whites and comprises 70–77% carbohydrate (including 30–60 g fiber), 10% fat, 13–20% protein. • Weight loss • Lowered blood pressure Low-carbohydrate (110–112) Emphasizes vegetables low in carbohydrate (such as salad greens, broccoli, cauliflower, cucumber, cabbage, and others); fat from animal foods, oils, butter, and avocado; and protein in the form of meat, poultry, fish, shellfish, eggs, cheese, nuts, and seeds. Some plans include fruit (e.g., berries) and a greater array of nonstarchy vegetables. Avoids starchy and sugary foods such as pasta, rice, potatoes, bread, and sweets. There is no consistent definition of “low” carbohydrate. In this review, a low-carbohydrate eating pattern is defined as reducing carbohydrates to 26–45% of total calories. • A1C reduction • Weight loss • Lowered blood pressure • Increased HDL-C and lowered triglycerides Very low-carbohydrate (VLC) (110–112) Similar to low-carbohydrate pattern but further limits carbohydrate-containing foods, and meals typically derive more than half of calories from fat. Often has a goal of 20–50 g of nonfiber carbohydrate per day to induce nutritional ketosis. In this review a VLC eating pattern is defined as reducing carbohydrate to 50%. Overall, few long-term (2 years or longer) randomized trials have been conducted of any of the dietary patterns in any of the conditions examined. What is the evidence for specific eating patterns to manage prediabetes and prevent type 2 diabetes? The most robust research available related to eating patterns for prediabetes or type 2 diabetes prevention are Mediterranean-style, low-fat, or low-carbohydrate eating plans (26,69,74,75). The PREDIMED trial, a large RCT, compared a Mediterranean-style to a low-fat eating pattern for prevention of type 2 diabetes onset, with the Mediterranean-style eating pattern resulting in a 30% lower relative risk (69). Epidemiologic studies correlate Mediterranean-style (76), vegetarian (77–80), and Dietary Approaches to Stop Hypertension (DASH) (76,81) eating patterns with a lower risk of developing type 2 diabetes, with no effect for low-carbohydrate eating patterns (82). Several large type 2 diabetes prevention RCTs (26,74,83,84) used low-fat eating plans to achieve weight loss and improve glucose tolerance, and some demonstrated decreased incidence of diabetes (26,74,83). Given the limited evidence, it is unclear which of the eating patterns are optimal. What is the evidence for specific eating patterns to manage type 2 diabetes? Mediterranean-Style Eating Pattern The Mediterranean-style pattern has demonstrated a mixed effect on A1C, weight, and lipids in a number of RCTs (85–90). In the Dietary Intervention Randomized Controlled Trial (DIRECT), obese adults with type 2 diabetes were randomized to a calorie-restricted Mediterranean-style, a calorie-restricted lower-fat, or a low-carbohydrate eating pattern (28% of calories from carbohydrate) without emphasis on calorie restriction. A1C was lowest in the low-carbohydrate group after 2 years, whereas fasting plasma glucose was lower in the Mediterranean-style group than in the lower-fat group (90). One of the largest and longest RCTs, the PREDIMED trial, compared a Mediterranean-style eating pattern with a low-fat eating pattern. After 4 years, glycemic management improved and the need for glucose-lowering medications was lower in the Mediterranean eating pattern group (89). In addition, the PREDIMED trial showed that a Mediterranean-style eating pattern intervention enriched with olive oil or nuts significantly reduced CVD incidence in both people with and without diabetes (91). Vegetarian or Vegan Eating Patterns Studies of vegetarian or vegan eating plans ranged in duration from 12 to 74 weeks and showed mixed results on glycemia and CVD risk factors. These eating plans often resulted in weight loss (92–97). Two meta-analyses of controlled trials (98,99) concluded that vegetarian and vegan eating plans can reduce A1C by an average of 0.3–0.4% in people with type 2 diabetes, and the larger meta-analysis (99) also reported that plant-based eating patterns reduced weight (weight reduction of 2 kg), waist circumference, LDL cholesterol (LDL-C), and non–HDL-C with no significant effect on fasting insulin, HDL-C, triglycerides, and blood pressure. Low-Fat Eating Pattern In the Look AHEAD (Action for Health in Diabetes) trial (100), individuals following a calorie-restricted low-fat eating pattern, in the context of a structured weight loss program using meal replacements, achieved moderate success compared with the control condition eating plan (101). However, lowering total fat intake did not consistently improve glycemia or CVD risk factors in people with type 2 diabetes based on a systematic review (45), several studies (102–105), and a meta-analysis (106). Benefit from a low-fat eating pattern appears to be mostly related to weight loss as opposed to the eating pattern itself (100,101). Additionally, low-fat eating patterns have commonly been used as the “control” intervention compared with other eating patterns. Very Low-Fat: Ornish or Pritikin Eating Patterns The Ornish and Pritikin lifestyle programs are two of the best known multicomponent very low-fat eating patterns. The Ornish program emphasizes a very low-fat, whole-foods, plant-based eating plan (about 70% of calories from carbohydrate, 10% from fat, 20% from protein, and 60 g of fiber), predominantly from vegetables, beans, fruits, grains, nonfat dairy, and egg whites. The Pritikin intervention advises that people consume 77% of calories from carbohydrate, about 10% from fat, 13% from protein, and 30–40 g of fiber per 1,000 calories, with no calorie restriction during a 26-day stay in an in-patient treatment center. Three nonrandomized single-arm studies with 69 to 652 participants lasting between 3 weeks and 2–3 years show that these multicomponent lifestyle intervention programs may improve glucose levels, weight, blood pressure, and HDL-C, with a mixed effect on triglycerides (107–109). Low-Carbohydrate or Very Low-Carbohydrate Eating Patterns Low-carbohydrate eating patterns, especially very low-carbohydrate (VLC) eating patterns, have been shown to reduce A1C and the need for antihyperglycemic medications. These eating patterns are among the most studied eating patterns for type 2 diabetes. One meta-analysis of RCTs that compared low-carbohydrate eating patterns (defined as ≤45% of calories from carbohydrate) to high-carbohydrate eating patterns (defined as >45% of calories from carbohydrate) found that A1C benefits were more pronounced in the VLC interventions (where 3 drinks per day or 21 drinks per week for men and >2 drinks per day or 14 drinks per week for women) consumed on a consistent basis may contribute to hyperglycemia (222). Starting with one drink per day, risk for reduced adherence to self-care and healthy lifestyle behaviors has been reported with increasing alcohol consumption (223). What are the effects of alcohol consumption on hypoglycemia risk in people with diabetes? Despite the potential glycemic and cardiovascular benefits of moderate alcohol consumption, alcohol intake may place people with diabetes at increased risk for delayed hypoglycemia (221,224–226). This effect may be a result of inhibition of gluconeogenesis, reduced hypoglycemia awareness due to the cerebral effects of alcohol, and/or impaired counterregulatory responses to hypoglycemia (227). This is particularly relevant for those using insulin or insulin secretagogues who can experience delayed nocturnal or fasting hypoglycemia after evening alcohol consumption. Consuming alcohol with food can minimize the risk of nocturnal hypoglycemia (227,228). It is essential that people with diabetes receive education regarding the recognition and management of delayed hypoglycemia and the potential need for more frequent glucose monitoring after consuming alcohol (227,229). How does alcohol consumption impact risk of developing type 2 diabetes? Comprehensive reviews and meta-analyses suggest a protective effect of moderate alcohol intake on the risk of developing type 2 diabetes, with a higher rate of diabetes in alcohol abstainers and heavy consumers (222,230–232). Moderate alcohol intake ranging from 6–48 g/day (0.5–3.4 drinks) was associated with a 30–56% lower incidence of type 2 diabetes (9,222,230–232). Knott et al. (232) reported reduced risk of type 2 diabetes at all levels of alcohol intake 3,500 mg daily (308), should be reduced (8,309–312) to prevent and manage hypertension. While reducing sodium to the general recommendation of 7 g/day were both associated with increased mortality in people with type 2 diabetes (315), leading to continued controversy over the potential benefits versus harms of lowering sodium intake below the general recommendation. In the absence of clear scientific evidence for benefit in people with combined diabetes and hypertension (313,314), sodium intake goals that are significantly lower than 2,300 mg/day should be considered only on an individual basis. When individualizing sodium intake recommendations, careful consideration must be given to issues such as food preference, palatability, availability, and additional cost of fresh or specialty low-sodium products (316). Diabetic Kidney Disease Consensus recommendation In individuals with diabetes and non–dialysis-dependent diabetic kidney disease (DKD), reducing the amount of dietary protein below the recommended daily allowance (0.8 g/kg body weight/day) does not meaningfully alter glycemic measures, cardiovascular risk measures, or the course of glomerular filtration rate decline and may increase risk for malnutrition. Are protein needs different for people with diabetes and kidney disease? Historically, low-protein eating plans were advised to reduce albuminuria and progression of chronic kidney disease in people with DKD, typically with improvements in albuminuria but no clear effect on estimated glomerular filtration rate. In addition, there is some indication that a low-protein eating plan may lead to malnutrition in individuals with DKD (317–321). The average daily level of protein intake for people with diabetes without kidney disease is typically 1–1.5 g/kg body weight/day or 15–20% of total calories (45,146). Evidence does not suggest that people with DKD need to restrict protein intake to less than the average protein intake. For people with DKD and macroalbuminuria, changing to a more soy-based source of protein may improve CVD risk factors but does not appear to alter proteinuria (322,323). Gastroparesis Consensus recommendations Selection of small-particle-size foods may improve symptoms of diabetes-related gastroparesis. Correcting hyperglycemia is one strategy for the management of gastroparesis, as acute hyperglycemia delays gastric emptying. Use of CGM and/or insulin pump therapy may aid the dosing and timing of insulin administration in people with type 1 or type 2 diabetes with gastroparesis. How is diabetic gastroparesis best managed? Consultation by an RDN knowledgeable in the management of gastroparesis is helpful in setting and maintaining treatment goals (324). Treatment goals include managing and reducing symptoms; correcting fluid, electrolyte, and nutritional deficiencies and glycemic imbalances; and addressing the precipitating cause(s) with appropriate drug therapy (227). Correcting hyperglycemia is one strategy for the management of gastroparesis, as acute hyperglycemia delays gastric emptying (325,326). Modification of food and beverage intake is the primary management strategy, especially among individuals with mild symptoms. People with gastroparesis may find it helpful to eat small, frequent meals. Replacing solid food with a greater proportion of liquid calories to meet individualized nutrition requirements may be helpful because consuming solid food in large volumes is associated with longer gastric emptying times (327,328). Large meals can also decrease the lower esophageal sphincter pressure, which may cause gastric reflux, providing further aggravation (327). Results from an RCT demonstrated eating plans that emphasize small-particle-size (<2 mm) foods may reduce severity of gastrointestinal symptoms (329). Small-particle-size food is defined as “food easy to mash with a fork into small particle size.” High-fiber foods, such as whole intact grains and foods with seeds, husks, stringy fibers, and membranes, should be excluded from the eating plan. Many of the foods typically recommended for people with diabetes, such as leafy green salads, raw vegetables, beans, and fresh fruits, and other food like fatty or tough meat, can be some of the most difficult foods for the gastroparetic stomach to grind and empty (324,329). Notably, the majority of nutrition therapy interventions for gastroparesis are based on the knowledge of the pathophysiology and clinical judgment rather than empirical research (227). The use of an insulin pump is another option for individuals with type 1 diabetes and insulin-requiring type 2 diabetes with gastroparesis (330). A small but positive 12-month trial reported a 1.8% reduction in A1C and decreased hospitalizations with insulin pump use (331). An insulin pump can be used to provide consistent basal insulin infusion, as well as the ability to modify mealtime insulin delivery doses as needed. The variable bolus feature allows the user to administer a portion of the meal bolus in an extended fashion over a longer period of time (227). Use of this feature may help to decrease the risk of postprandial hyperglycemia as well as hypoglycemia. How is the risk of malnutrition in diabetic gastroparesis managed? When an individual with gastroparesis falls below target weight, nutrition support in the form of oral (for acute exacerbation of symptoms), enteral, or parenteral nutrition should be considered (327). A 5% unintentional loss of usual body weight over 3 months or 10% loss over 6 months is indicative of severe malnutrition. Other nutritional risk parameters include weight <80% of ideal weight, BMI <20 kg/m2, or a loss of 5 lb or 2.5% of baseline weight in 1 month. PERSONALIZED NUTRITION Consensus recommendation Studies using personalized nutrition approaches to examine genetic, metabolomic, and microbiome variations have not yet identified specific factors that consistently improve outcomes in type 1 diabetes, type 2 diabetes, or prediabetes. Do genetic, metabolomic, or microbiome variants, or other types of personalized nutrition prescriptions, influence glycemic or other diabetes-related outcomes? Currently, use of nutrition counseling approaches aimed at personalizing guidance based on genetic, metabolomic, and microbiome information is an area of intense research. Testing has become available commercially, with direct-to-consumer advertising. Some intriguing research has shown, for example, the wide interpersonal variability in blood glucose response to standardized meals that could be predicted by clinical and microbiome profiles (332). At this point, however, no clear conclusions can be drawn regarding their utility owing to wide variations in the markers used for predicting outcomes, in the populations and nutrients studied, and in the associations found. Further, overall findings tend to support evidence from existing clinical trials and observational studies showing that people with markers indicating higher risk for diabetes, prediabetes, or insulin resistance have lower risk when they reduce calorie, carbohydrate, or saturated fat intake and/or increase fiber or protein intake compared with their peers (333–337). Conclusions Ideally, an eating plan should be developed in collaboration with the person with prediabetes or diabetes and an RDN through participation in diabetes self-management education when the diagnosis of prediabetes or diabetes is made. Nutrition therapy recommendations need to be adjusted regularly based on changes in an individual’s life circumstances, preferences, and disease course (1). Regular follow-up with a diabetes health care provider is also critical to adjust other aspects of the treatment plan as indicated. One of the most commonly asked questions upon receiving a diagnosis of diabetes is “What can I eat?” Despite widespread interest in evidence-based diabetes nutrition therapy interventions, large, well-conducted nutrition trials continue to lag far behind other areas of diabetes research. Unfortunately, national data indicate that most people with diabetes do not receive any nutrition therapy or formal diabetes education (4,9,16,20). Strategies to improve access, clinical outcomes, and cost effectiveness include the following reducing barriers to referrals and allowing self-referrals to MNT and DSMES; providing in-person or technology-enabled diabetes nutrition therapy and education integrated with medical management (9,12,13,15,16,19,22,291–293,338–342); engineering solutions that include two-way communication between the individual and his or her health care team to provide individualized feedback and tailored education based on the analyzed patient-generated health data (38,264,343); increasing the use of community health workers and peer coaches to provide culturally appropriate, ongoing support and clinically linked care coordination and improve the reach of MNT and DSMES (15,19,23,38,343,344). Evaluating nutrition evidence is complex given that multiple dietary factors influence glycemic management and CVD risk factors, and the influence of a combination of factors can be substantial. Based on a review of the evidence, it is clear that knowledge gaps continue to exist and further research on nutrition and eating patterns is needed in individuals with type 1 diabetes, type 2 diabetes, and prediabetes. Future studies should address the impact of different eating patterns compared with one another, controlling for supplementary advice (such as stress reduction, physical activity, or smoking cessation); the impact of weight loss on other outcomes (which eating plans are beneficial only with weight loss, which can show benefit regardless of weight loss); how cultural or personal preferences, psychological supports, co-occurring conditions, socioeconomic status, food insecurity, and other factors impact being consistent with an eating plan and its effectiveness; the need for increased length and size of studies, to better understand long-term impacts on clinically relevant outcomes; tailoring MNT and DSMES to different racial/ethnic groups and socioeconomic groups; comparisons of different delivery methods aided by technology (e.g., mobile technology, apps, social media, technology-enabled and internet-based tools); and ongoing cost-effectiveness studies that will further support coverage by third-party payers or bundling services into evolving value-based care and payment models. Supplementary Material Supplementary Data
                Bookmark

                Author and article information

                Contributors
                j.dening@research.deakin.edu.au
                Journal
                Nutr Diabetes
                Nutr Diabetes
                Nutrition & Diabetes
                Nature Publishing Group UK (London )
                2044-4052
                27 August 2023
                27 August 2023
                2023
                : 13
                : 12
                Affiliations
                [1 ]GRID grid.1021.2, ISNI 0000 0001 0526 7079, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, , Deakin University, ; Burwood, VIC Australia
                [2 ]GRID grid.1021.2, ISNI 0000 0001 0526 7079, Biostatistics Unit, Faculty of Health, , Deakin University, ; Burwood, VIC Australia
                Author information
                http://orcid.org/0000-0003-0072-460X
                Article
                240
                10.1038/s41387-023-00240-8
                10460437
                37633959
                5827ec6d-d1e7-4fa5-8359-7d33f7fce9c0
                © Springer Nature Limited 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 October 2022
                : 14 May 2023
                : 29 June 2023
                Funding
                Funded by: This work was supported by PhD student funds from Deakin University Institute of Physical Activity and Nutrition. The funder had no role in the study design, data collection, analysis, interpretation, or writing of the report.
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2023

                Endocrinology & Diabetes
                patient education,nutrition,public health
                Endocrinology & Diabetes
                patient education, nutrition, public health

                Comments

                Comment on this article