153
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Electrospun nanofibrous structure: A novel scaffold for tissue engineering

      Journal of biomedical materials research
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Nanometre diameter fibres of polymer, produced by electrospinning

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Electrospinning process and applications of electrospun fibers

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Collagen fibril formation.

              Collagen is most abundant in animal tissues as very long fibrils with a characteristic axial periodic structure. The fibrils provide the major biomechanical scaffold for cell attachment and anchorage of macromolecules, allowing the shape and form of tissues to be defined and maintained. How the fibrils are formed from their monomeric precursors is the primary concern of this review. Collagen fibril formation is basically a self-assembly process (i.e. one which is to a large extent determined by the intrinsic properties of the collagen molecules themselves) but it is also sensitive to cell-mediated regulation, particularly in young or healing tissues. Recent attention has been focused on "early fibrils' or "fibril segments' of approximately 10 microns in length which appear to be intermediates in the formation of mature fibrils that can grow to be hundreds of micrometers in length. Data from several laboratories indicate that these early fibrils can be unipolar (with all molecules pointing in the same direction) or bipolar (in which the orientation of collagen molecules reverses at a single location along the fibril). The occurrence of such early fibrils has major implications for tissue morphogenesis and repair. In this article we review the current understanding of the origin of unipolar and bipolar fibrils, and how mature fibrils are assembled from early fibrils. We include preliminary evidence from invertebrates which suggests that the principles for bipolar fibril assembly were established at least 500 million years ago.
                Bookmark

                Author and article information

                Journal
                10.1002/jbm.10167
                11948520
                http://doi.wiley.com/10.1002/tdm_license_1.1

                Comments

                Comment on this article