2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A chromosome-level genome assembly of an alpine plant Crucihimalaya lasiocarpa provides insights into high-altitude adaptation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It remains largely unknown how plants adapt to high-altitude habitats. Crucihimalaya (Brassicaceae) is an alpine genus occurring in the Qinghai–Tibet Plateau characterized by cold temperatures and strong ultraviolet radiation. Here, we generated a chromosome-level genome for C. lasiocarpa with a total size of 255.8 Mb and a scaffold N50 size of 31.9 Mb. We first examined the karyotype origin of this species and found that the karyotype of five chromosomes resembled the ancestral karyotype of the Brassicaceae family, while the other three showed strong chromosomal structural variations. In combination with the rough genome sequence of another congener ( C. himalaica), we found that the significantly expanded gene families and positively selected genes involved in alpine adaptation have occurred since the origin of this genus. Our new findings provide valuable information for the chromosomal karyotype evolution of Brassicaceae and investigations of high-altitude environment adaptation of the genus.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

            We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

              Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Journal
                DNA Res
                DNA Res
                dnares
                DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes
                Oxford University Press
                1340-2838
                1756-1663
                January 2022
                29 January 2022
                29 January 2022
                : 29
                : 1
                : dsac004
                Affiliations
                Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu 610065, China
                Author notes
                To whom correspondence should be addressed. Tel. +86 132 5819 5631. Fax. +028 8541 2053. Email: huquanjun@ 123456scu.edu.cn
                Author information
                https://orcid.org/0000-0001-6922-2144
                Article
                dsac004
                10.1093/dnares/dsac004
                8801980
                35094078
                563bddda-ca84-4fa4-ac80-da4aa4398b90
                © The Author(s) 2022. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 November 2021
                : 16 January 2022
                Page count
                Pages: 11
                Categories
                Resource Article: Genomes Explored
                AcademicSubjects/MED00774
                AcademicSubjects/SCI01140

                Genetics
                crucihimalaya,adaptation, de novo genome,karyotype evolution,high altitude
                Genetics
                crucihimalaya, adaptation, de novo genome, karyotype evolution, high altitude

                Comments

                Comment on this article