54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabolomics answers a fundamental question in biology: How does metabolism respond to genetic, environmental or phenotypic perturbations? Combining several metabolomics assays can yield datasets for more than 800 structurally identified metabolites. However, biological interpretations of metabolic regulation in these datasets are hindered by inherent limits of pathway enrichment statistics. We have developed ChemRICH, a statistical enrichment approach that is based on chemical similarity rather than sparse biochemical knowledge annotations. ChemRICH utilizes structure similarity and chemical ontologies to map all known metabolites and name metabolic modules. Unlike pathway mapping, this strategy yields study-specific, non-overlapping sets of all identified metabolites. Subsequent enrichment statistics is superior to pathway enrichments because ChemRICH sets have a self-contained size where p-values do not rely on the size of a background database. We demonstrate ChemRICH’s efficiency on a public metabolomics data set discerning the development of type 1 diabetes in a non-obese diabetic mouse model. ChemRICH is available at www.chemrich.fiehnlab.ucdavis.edu

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism

            Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis

              First released in 2009, MetaboAnalyst (www.metaboanalyst.ca) was a relatively simple web server designed to facilitate metabolomic data processing and statistical analysis. With continuing advances in metabolomics along with constant user feedback, it became clear that a substantial upgrade to the original server was necessary. MetaboAnalyst 2.0, which is the successor to MetaboAnalyst, represents just such an upgrade. MetaboAnalyst 2.0 now contains dozens of new features and functions including new procedures for data filtering, data editing and data normalization. It also supports multi-group data analysis, two-factor analysis as well as time-series data analysis. These new functions have also been supplemented with: (i) a quality-control module that allows users to evaluate their data quality before conducting any analysis, (ii) a functional enrichment analysis module that allows users to identify biologically meaningful patterns using metabolite set enrichment analysis and (iii) a metabolic pathway analysis module that allows users to perform pathway analysis and visualization for 15 different model organisms. In developing MetaboAnalyst 2.0 we have also substantially improved its graphical presentation tools. All images are now generated using anti-aliasing and are available over a range of resolutions, sizes and formats (PNG, TIFF, PDF, PostScript, or SVG). To improve its performance, MetaboAnalyst 2.0 is now hosted on a much more powerful server with substantially modified code to take advantage the server’s multi-core CPUs for computationally intensive tasks. MetaboAnalyst 2.0 also maintains a collection of 50 or more FAQs and more than a dozen tutorials compiled from user queries and requests. A downloadable version of MetaboAnalyst 2.0, along detailed instructions for local installation is now available as well.
                Bookmark

                Author and article information

                Contributors
                ofiehn@ucdavis.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                6 November 2017
                6 November 2017
                2017
                : 7
                : 14567
                Affiliations
                ISNI 0000 0004 1936 9684, GRID grid.27860.3b, NIH-West Coast Metabolomics Center, Genome Center University of California, ; Davis, USA
                Author information
                http://orcid.org/0000-0002-6261-8928
                Article
                15231
                10.1038/s41598-017-15231-w
                5673929
                29109515
                55ed8597-5697-40a9-b3e2-7223a5ba6e09
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 August 2017
                : 23 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article