12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung cancer is the second most prevalent and the deadliest among all cancer types. Chemotherapy is recommended for lung cancers to control tumor growth and to prolong patient survival. Systemic chemotherapy typically has very limited efficacy as well as severe systemic adverse effects, which are often attributed to the distribution of anticancer drugs to non-targeted sites. In contrast, inhalation routes permit the delivery of drugs directly to the lungs providing high local concentrations that may enhance the anti-tumor effect while alleviating systemic adverse effects. Preliminary studies in animals and humans have suggested that most inhaled chemotherapies are tolerable with manageable pulmonary adverse effects, including cough and bronchospasm. Promoting the deposition of anticancer drugs in tumorous cells and minimizing access to healthy lung cells can further augment the efficacy and reduce the risk of local toxicities caused by inhaled chemotherapy. Sustained release and tumor localization characteristics make nanoparticle formulations a promising candidate for the inhaled delivery of chemotherapeutic agents against lung cancers. However, the physiology of respiratory tracts and lung clearance mechanisms present key barriers for the effective deposition and retention of inhaled nanoparticle formulations in the lungs. Recent research has focused on the development of novel formulations to maximize lung deposition and to minimize pulmonary clearance of inhaled nanoparticles. This article systematically reviews the challenges and opportunities for the pulmonary delivery of nanoparticle formulations for the treatment of lung cancers.

          Related collections

          Most cited references229

          • Record: found
          • Abstract: found
          • Article: not found

          A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.

          We previously found that a polymer conjugated to the anticancer protein neocarzinostatin, named smancs, accumulated more in tumor tissues than did neocarzinostatin. To determine the general mechanism of this tumoritropic accumulation of smancs and other proteins, we used radioactive (51Cr-labeled) proteins of various molecular sizes (Mr 12,000 to 160,000) and other properties. In addition, we used dye-complexed serum albumin to visualize the accumulation in tumors of tumor-bearing mice. Many proteins progressively accumulated in the tumor tissues of these mice, and a ratio of the protein concentration in the tumor to that in the blood of 5 was obtained within 19 to 72 h. A large protein like immunoglobulin G required a longer time to reach this value of 5. The protein concentration ratio in the tumor to that in the blood of neither 1 nor 5 was achieved with neocarzinostatin, a representative of a small protein (Mr 12,000) in all time. We speculate that the tumoritropic accumulation of these proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels. This accumulation of macromolecules in the tumor was also found after i.v. injection of an albumin-dye complex (Mr 69,000), as well as after injection into normal and tumor tissues. The complex was retained only by tumor tissue for prolonged periods. There was little lymphatic recovery of macromolecules from tumor tissue. The present finding is of potential value in macromolecular tumor therapeutics and diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer.

            On the basis of a previous meta-analysis, the International Adjuvant Lung Cancer Trial was designed to evaluate the effect of cisplatin-based adjuvant chemotherapy on survival after complete resection of non-small-cell lung cancer. We randomly assigned patients either to three or four cycles of cisplatin-based chemotherapy or to observation. Before randomization, each center determined the pathological stages to include, its policy for chemotherapy (the dose of cisplatin and the drug to be combined with cisplatin), and its postoperative radiotherapy policy. The main end point was overall survival. A total of 1867 patients underwent randomization; 36.5 percent had pathological stage I disease, 24.2 percent stage II, and 39.3 percent stage III. The drug allocated with cisplatin was etoposide in 56.5 percent of patients, vinorelbine in 26.8 percent, vinblastine in 11.0 percent, and vindesine in 5.8 percent. Of the 932 patients assigned to chemotherapy, 73.8 percent received at least 240 mg of cisplatin per square meter of body-surface area. The median duration of follow-up was 56 months. Patients assigned to chemotherapy had a significantly higher survival rate than those assigned to observation (44.5 percent vs. 40.4 percent at five years [469 deaths vs. 504]; hazard ratio for death, 0.86; 95 percent confidence interval, 0.76 to 0.98; P<0.03). Patients assigned to chemotherapy also had a significantly higher disease-free survival rate than those assigned to observation (39.4 percent vs. 34.3 percent at five years [518 events vs. 577]; hazard ratio, 0.83; 95 percent confidence interval, 0.74 to 0.94; P<0.003). There were no significant interactions with prespecified factors. Seven patients (0.8 percent) died of chemotherapy-induced toxic effects. Cisplatin-based adjuvant chemotherapy improves survival among patients with completely resected non-small-cell lung cancer. Copyright 2004 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging.

              Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents that have been developed for magnetic resonance (MR) imaging. These MNPs have traditionally been used for disease imaging via passive targeting, but recent advances have opened the door to cellular-specific targeting, drug delivery, and multi-modal imaging by these nanoparticles. As more elaborate MNPs are envisioned, adherence to proper design criteria (e.g. size, coating, molecular functionalization) becomes even more essential. This review summarizes the design parameters that affect MNP performance in vivo, including the physicochemical properties and nanoparticle surface modifications, such as MNP coating and targeting ligand functionalizations that can enhance MNP management of biological barriers. A careful review of the chemistries used to modify the surfaces of MNPs is also given, with attention paid to optimizing the activity of bound ligands while maintaining favorable physicochemical properties. Copyright 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group
                1671-4083
                1745-7254
                June 2017
                01 May 2017
                : 38
                : 6
                : 782-797
                Affiliations
                [1]Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University , West Lafayette, IN 47907-2091, USA
                Author notes
                Article
                aps201734
                10.1038/aps.2017.34
                5520191
                28504252
                55527d5e-98d7-4dcd-be49-80732143637f
                Copyright © 2017 CPS and SIMM
                History
                : 10 December 2016
                : 04 February 2017
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                Pharmacology & Pharmaceutical medicine

                Comments

                Comment on this article