Recently, many models are formulated in terms of fractional derivatives, such as in control processing, viscoelasticity, signal processing, and anomalous diffusion. In the present paper, we further study the important properties of the Riemann-Liouville (RL) derivative, one of mostly used fractional derivatives. Some important properties of the Caputo derivative which have not been discussed elsewhere are simultaneously mentioned. The partial fractional derivatives are also introduced. These discussions are beneficial in understanding fractional calculus and modeling fractional equations in science and engineering.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.