2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Successional and phenological effects on plant‐floral visitor interaction networks of a tropical dry forest

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          • Plant‐pollinator interactions are fundamental to ecosystem functioning; however, the role that succession and phenology have on these interactions is poorly understood, particularly in endangered tropical ecosystems. In highly diverse ecosystems such as tropical dry forests (TDF), variation in water and food availability determines the life cycles of animal pollinators. Therefore, understanding patterns of flowering phenology and plant‐pollinator interactions across seasons in successional environments is key to maintaining and restoring TDF.

          • We analysed the functional dynamics of plant‐floral visitor interactions at the community level across a successional gradient in a Mexican TDF. We evaluated changes in the diversity of blooming plant species and floral visitors, phenological patterns, interaction network metrics and beta diversity among early, intermediate and late successional stages, between dry and rainy seasons.

          • We found a higher diversity of blooming plant species and a higher richness of animal species in the intermediate and late successional stages. Peak abundance of floral visitors overlapped with flowering peaks in the late successional stages, but this was not consistently the case in the early and intermediate stages. Plant‐floral visitors networks differed in structure according to successional stage and season, but specialisation metrics were higher in late successional stages. Interaction networks were more dissimilar between dry and rainy seasons within successional stages than within seasons between successional stages, suggesting connectivity across successional sites during each season. In addition, closely related plant species do not share the same pollination systems in any successional stage.

          • Synthesis. Our results showed that plant‐floral visitor interactions are dynamic and vary with flowering phenology and with successional changes in plant and animal diversity. Plant‐floral visitor interactions were more diverse and specialised in the late successional stages. In the rainy season, differences in network structure among successional stages are due to interaction rewiring, while in the dry season, it is caused by species turnover. Our results demonstrate that seasonality plays a key role in community diversity and network structure and highlight the importance of conserving mature forests to ensure the maintenance of critical pollination interactions across all successional stages.

          Resumen

          • Las interacciones planta‐polinizador son fundamentales para el funcionamiento del ecosistema; sin embargo, el papel que tienen la sucesión y la fenología en estas interacciones es poco conocido, particularmente en los ecosistemas tropicales. En ecosistemas amenazados y muy diversos, como los bosques tropicales secos (TDF), la variación en la disponibilidad de agua y recursos determina los ciclos de vida de los animales polinizadores. Por lo tanto, comprender los patrones de la fenología de floración y las interacciones planta‐polinizador en ambientes sucesionales a lo largo del año es clave para mantener y restaurar el TDF.

          • En este estudio, analizamos la dinámica funcional de las interacciones planta‐visitante floral a nivel de comunidad a través de un gradiente sucesional en un TDF mexicano. Evaluamos los cambios temporales en la abundancia y diversidad de las plantas en floración y los visitantes florales, así como los patrones fenológicos y las métricas de redes de interacción, y la diversidad beta entre etapas de sucesión tempranas, intermedias y tardías.

          • Encontramos una mayor diversidad de especies de plantas en floración y una mayor riqueza de especies animales en las etapas de sucesión intermedias y tardías. Los picos de floración y la abundancia de los visitantes florales traslapan en los estadíos tardíos de sucesión, pero no en los tempranos e intermedios. Las redes de interacción plantas‐visitante floral difieren en estructura de acuerdo con la etapa de sucesión y la estación del año, pero la especialización es más alta en los estadíos sucesionales tardíos. Las redes de interacción difieren más entre las estaciones seca y lluviosa dentro de cada estadío de sucesión, que entre estadíos sucesionales en cada estación, lo que sugiere conectividad entre los sitios sucesionales. También encontramos que en todas las etapas de sucesión, las especies de plantas estrechamente relacionadas no comparten los mismos sistemas de polinización.

          • Síntesis. Nuestros resultados muestran que las interacciones planta‐visitante floral son dinámicas y varían con la fenología de la floración y con los cambios sucesionales en la diversidad de plantas y animales. Las interacciones entre plantas y visitantes fueron más diversas y especializadas en las etapas tardías de sucesión. En la estación lluviosa, las diferencias en la estructura de la red entre las etapas sucesionales se deben predominantemente al recableado en las interacciones, mientras que en la estación seca se deben al recambio de especies. Nuestros resultados demuestran que la estacionalidad juega un papel clave en la determinación de la diversidad de la comunidad y la estructura de las redes, y destaca la importancia de conservar los bosques maduros para asegurar el mantenimiento de las interacciones de polinización durante la sucesión ecológica.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Cytoscape: a software environment for integrated models of biomolecular interaction networks.

          Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Picante: R tools for integrating phylogenies and ecology.

            Picante is a software package that provides a comprehensive set of tools for analyzing the phylogenetic and trait diversity of ecological communities. The package calculates phylogenetic diversity metrics, performs trait comparative analyses, manipulates phenotypic and phylogenetic data, and performs tests for phylogenetic signal in trait distributions, community structure and species interactions. Picante is a package for the R statistical language and environment written in R and C, released under a GPL v2 open-source license, and freely available on the web (http://picante.r-forge.r-project.org) and from CRAN (http://cran.r-project.org).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Importance of pollinators in changing landscapes for world crops.

              The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Ecology
                Journal of Ecology
                Wiley
                0022-0477
                1365-2745
                April 2023
                February 14 2023
                April 2023
                : 111
                : 4
                : 927-942
                Affiliations
                [1 ] Laboratorio Nacional de Análisis y Síntesis Ecológica Escuela Nacional de Estudios Superiores, Unidad Morelia Morelia Mexico
                [2 ] Jardín Botánico, Instituto de Biología, Sede Tlaxcala Universidad Nacional Autónoma de México Santa Cruz Tlaxcala Mexico
                [3 ] Laboratorio Binacional de Análisis y Síntesis Ecológica UNAM‐UCR San Pedro Costa Rica
                [4 ] Escuela Superior de Desarrollo Sustentable Universidad Autónoma de Guerrero Tecpan de Galeana Mexico
                [5 ] Laboratorio de Vida Silvestre, Facultad de Biología Universidad Michoacana de San Nicolás de Hidalgo Morelia Mexico
                [6 ] Centro de Investigación en Biodiversidad y Ecología Tropical Universidad de Costa Rica San José Costa Rica
                [7 ] Escuela de Biología Universidad de Costa Rica San José Costa Rica
                [8 ] Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México Morelia Mexico
                Article
                10.1111/1365-2745.14072
                533c8c10-c5af-48fa-9b80-a9b80273ebaf
                © 2023

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article