8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Grain production versus resource and environmental costs: towards increasing sustainability of nutrient use in China

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Enhanced nitrogen deposition over China.

          China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4(+)) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3(-)), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rice yields decline with higher night temperature from global warming.

            The impact of projected global warming on crop yields has been evaluated by indirect methods using simulation models. Direct studies on the effects of observed climate change on crop growth and yield could provide more accurate information for assessing the impact of climate change on crop production. We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature by using data from irrigated field experiments conducted at the International Rice Research Institute Farm from 1992 to 2003. Here we report that annual mean maximum and minimum temperatures have increased by 0.35 degrees C and 1.13 degrees C, respectively, for the period 1979-2003 and a close linkage between rice grain yield and mean minimum temperature during the dry cropping season (January to April). Grain yield declined by 10% for each 1 degrees C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

              The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.
                Bookmark

                Author and article information

                Journal
                Journal of Experimental Botany
                EXBOTJ
                Oxford University Press (OUP)
                0022-0957
                1460-2431
                September 07 2016
                September 2016
                September 2016
                August 03 2016
                : 67
                : 17
                : 4935-4949
                Article
                10.1093/jxb/erw282
                27489235
                527f7370-2471-4630-b5b5-b5b3092fb8c2
                © 2016
                History

                Comments

                Comment on this article