7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Origin and Evolution of Plastid Genome Downsizing in Southern Hemispheric Cypresses (Cupressaceae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plastome downsizing is rare in photosynthetic seed plants. However, a large-scale study of five cupressophyte families (conifers II) indicated that the plastomes of some Cupressaceous genera are notably reduced and compact. Here, we enriched taxon sampling in Cupressaceae by adding plastomes of ten previously unreported genera to determine the origin, evolution, and consequences of plastome reduction in this family. We discovered that plastome downsizing is specific to Callitroideae (a Southern Hemispheric subfamily). Their plastomes are the smallest, encode the fewest plastid genes, and contain the fewest GC-end codons among Cupressaceae. We show that repeated tRNA losses and shrinkage of intergenic spacers together contributed to the plastome downsizing in Callitroideae. Moreover, our absolute nucleotide substitution rate analyses suggest relaxed functional constraints in translation-related plastid genes ( clpP, infA, rpl, and rps), but not in photosynthesis- or transcription-related ones, of Callitris (the most diverse genus in Callitroideae). We hypothesize that the small and low-GC plastomes of Callitroideae emerged ca. 112–75 million years ago as an adaptation to increased competition with angiosperms on the Gondwana supercontinent. Our findings highlight Callitroideae as another case of plastome downsizing in photosynthetic seed plant lineages.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information

            We present SequenceMatrix, software that is designed to facilitate the assembly and analysis of multi-gene datasets. Genes are concatenated by dragging and dropping FASTA, NEXUS, or TNT files with aligned sequences into the program window. A multi-gene dataset is concatenated and displayed in a spreadsheet; each sequence is represented by a cell that provides information on sequence length, number of indels, the number of ambiguous bases ("Ns"), and the availability of codon information. Alternatively, GenBank numbers for the sequences can be displayed and exported. Matrices with hundreds of genes and taxa can be concatenated within minutes and exported in TNT, NEXUS, or PHYLIP formats, preserving both character set and codon information for TNT and NEXUS files. SequenceMatrix also creates taxon sets listing taxa with a minimum number of characters or gene fragments, which helps assess preliminary datasets. Entire taxa, whole gene fragments, or individual sequences for a particular gene and species can be excluded from export. Data matrices can be re-split into their component genes and the gene fragments can be exported as individual gene files. SequenceMatrix also includes two tools that help to identify sequences that may have been compromised through laboratory contamination or data management error. One tool lists identical or near-identical sequences within genes, while the other compares the pairwise distance pattern of one gene against the pattern for all remaining genes combined. SequenceMatrix is Java-based and compatible with the Microsoft Windows, Apple MacOS X and Linux operating systems. The software is freely available from http://code.google.com/p/sequencematrix/. © The Willi Hennig Society 2010.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Tree of Life Reveals Clock-Like Speciation and Diversification

              Genomic data are rapidly resolving the tree of living species calibrated to time, the timetree of life, which will provide a framework for research in diverse fields of science. Previous analyses of taxonomically restricted timetrees have found a decline in the rate of diversification in many groups of organisms, often attributed to ecological interactions among species. Here, we have synthesized a global timetree of life from 2,274 studies representing 50,632 species and examined the pattern and rate of diversification as well as the timing of speciation. We found that species diversity has been mostly expanding overall and in many smaller groups of species, and that the rate of diversification in eukaryotes has been mostly constant. We also identified, and avoided, potential biases that may have influenced previous analyses of diversification including low levels of taxon sampling, small clade size, and the inclusion of stem branches in clade analyses. We found consistency in time-to-speciation among plants and animals, ∼2 My, as measured by intervals of crown and stem species times. Together, this clock-like change at different levels suggests that speciation and diversification are processes dominated by random events and that adaptive change is largely a separate process.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                23 June 2020
                2020
                : 11
                : 901
                Affiliations
                Biodiversity Research Center, Academia Sinica , Taipei, Taiwan
                Author notes

                Edited by: Kathleen Pryer, Duke University, United States

                Reviewed by: Christopher Randle, Sam Houston State University, United States; Maria D. Logacheva, Lomonosov Moscow State University, Russia

                *Correspondence: Shu-Miaw Chaw, smchaw@ 123456sinica.edu.tw

                ORCID: Edi Sudianto, orcid.org/0000-0002-0771-0385; Shu-Miaw Chaw, orcid.org/0000-0003-2499-7071

                This article was submitted to Plant Systematics and Evolution, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2020.00901
                7324783
                523ce51f-1770-4ab6-88c5-e7dd400402dd
                Copyright © 2020 Sudianto, Wu and Chaw.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 April 2020
                : 02 June 2020
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 73, Pages: 10, Words: 0
                Funding
                Funded by: Ministry of Science and Technology, Taiwan 10.13039/501100004663
                Funded by: Academia Sinica 10.13039/501100001869
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                callitroids,callitroideae,cupressophytes,plastid genome,genome downsizing,southern hemisphere

                Comments

                Comment on this article