63
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characteristics of Microbial Communities in Crustal Fluids in a Deep-Sea Hydrothermal Field of the Suiyo Seamount

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To directly access the sub-seafloor microbial communities, seafloor drilling has been done in a deep-sea hydrothermal field of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. In the present study, crustal fluids were collected from the boreholes, and the bacterial and archaeal communities in the fluids were investigated by culture-independent molecular analysis based on 16S rRNA gene sequences. Bottom seawater, sands, rocks, sulfide mound, and chimneys were also collected around the boreholes and analyzed for comparisons. Comprehensive analysis revealed the characteristics of the microbial community composition in the crustal fluids. Phylotypes closely related to cultured species, e.g., Alteromonas, Halomonas, Marinobacter, were relatively abundant in some crustal fluid samples, whereas the phylotypes related to Pelagibacter and the SUP05-group were relatively abundant in the seawater samples. Phylotypes related to other uncultured environmental clones in Alphaproteobacteria and Gammaproteobacteria were relatively abundant in the sand, rock, sulfide mound, and chimney samples. Furthermore, comparative analysis with previous studies of the Suiyo Seamount crustal fluids indicates the change in the microbial community composition for 3 years. Our results provide novel insights into the characteristics of the microbial communities in crustal fluids beneath a deep-sea hydrothermal field.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Archaea in coastal marine environments.

          E Delong (1992)
          Archaea (archaebacteria) are a phenotypically diverse group of microorganisms that share a common evolutionary history. There are four general phenotypic groups of archaea: the methanogens, the extreme halophiles, the sulfate-reducing archaea, and the extreme thermophiles. In the marine environment, archaeal habitats are generally limited to shallow or deep-sea anaerobic sediments (free-living and endosymbiotic methanogens), hot springs or deep-sea hydrothermal vents (methanogens, sulfate reducers, and extreme thermophiles), and highly saline land-locked seas (halophiles). This report provides evidence for the widespread occurrence of unusual archaea in oxygenated coastal surface waters of North America. Quantitative estimates indicated that up to 2% of the total ribosomal RNA extracted from coastal bacterioplankton assemblages was archaeal. Archaeal small-subunit ribosomal RNA-encoding DNAs (rDNAs) were cloned from mixed bacterioplankton populations collected at geographically distant sampling sites. Phylogenetic and nucleotide signature analyses of these cloned rDNAs revealed the presence of two lineages of archaea, each sharing the diagnostic signatures and structural features previously established for the domain Archaea. Both of these lineages were found in bacterioplankton populations collected off the east and west coasts of North America. The abundance and distribution of these archaea in oxic coastal surface waters suggests that these microorganisms represent undescribed physiological types of archaea, which reside and compete with aerobic, mesophilic eubacteria in marine coastal environments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data

            Next-generation sequencing techniques, and PhyloChip, have made simultaneous phylogenetic analyses of hundreds of microbial communities possible. Insight into community structure has been limited by the inability to integrate and visualize such vast datasets. Fast UniFrac overcomes these issues, allowing integration of larger numbers of sequences and samples into a single analysis. Its new array-based implementation offers orders of magnitude improvements over the original version. New 3D visualization of principal coordinates analysis (PCoA) results, with the option to view multiple coordinate axes simultaneously, provides a powerful way to quickly identify patterns that relate vast numbers of microbial communities. We demonstrate the potential of Fast UniFrac using examples from three data types: Sanger-sequencing studies of diverse free-living and animal-associated bacterial assemblages and from the gut of obese humans as they diet, pyrosequencing data integrated from studies of the human hand and gut, and PhyloChip data from a study of citrus pathogens. We show that a Fast UniFrac analysis using a reference tree recaptures patterns that could not be detected without considering phylogenetic relationships and that Fast UniFrac, coupled with BLAST-based sequence assignment, can be used to quickly analyze pyrosequencing runs containing hundreds of thousands of sequences, revealing patterns relating human and gut samples. Finally, we show that the application of Fast UniFrac to PhyloChip data could identify well-defined subcategories associated with infection. Together, these case studies point the way towards a broad range of applications and demonstrate some of the new features of Fast UniFrac.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Archaeal dominance in the mesopelagic zone of the Pacific Ocean.

              The ocean's interior is Earth's largest biome. Recently, cultivation-independent ribosomal RNA gene surveys have indicated a potential importance for archaea in the subsurface ocean. But quantitative data on the abundance of specific microbial groups in the deep sea are lacking. Here we report a year-long study of the abundance of two specific archaeal groups (pelagic euryarchaeota and pelagic crenarchaeota) in one of the ocean's largest habitats. Monthly sampling was conducted throughout the water column (surface to 4,750 m) at the Hawai'i Ocean Time-series station. Below the euphotic zone (> 150 m), pelagic crenarchaeota comprised a large fraction of total marine picoplankton, equivalent in cell numbers to bacteria at depths greater than 1,000 m. The fraction of crenarchaeota increased with depth, reaching 39% of total DNA-containing picoplankton detected. The average sum of archaea plus bacteria detected by rRNA-targeted fluorescent probes ranged from 63 to 90% of total cell numbers at all depths throughout our survey. The high proportion of cells containing significant amounts of rRNA suggests that most pelagic deep-sea microorganisms are metabolically active. Furthermore, our results suggest that the global oceans harbour approximately 1.3 x 10(28) archaeal cells, and 3.1 x 10(28) bacterial cells. Our data suggest that pelagic crenarchaeota represent one of the ocean's single most abundant cell types.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                17 April 2013
                2013
                : 4
                : 85
                Affiliations
                [1] 1Japan Collection of Microorganisms, RIKEN BioResource Center Wako-shi, Saitama, Japan
                [2] 2Department of Molecular Biology, Tokyo University of Pharmacy and Life Science Hachioji, Tokyo, Japan
                [3] 3Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, Japan
                [4] 4Graduate School of Life and Environmental Sciences, University of Tsukuba Tsukuba, Ibaraki, Japan
                [5] 5Center for Advanced Marine Core Research, Kochi University Nankoku, Kochi, Japan
                [6] 6Department of Earth and Planetary Science, Faculty of Science, Kyushu University Higashi-ku, Fukuoka-shi, Fukuoka, Japan
                Author notes

                Edited by: Anna-Louise Reysenbach, Portland State University, USA

                Reviewed by: Karen G. Lloyd, Aarhus University, Denmark; Timothy Ferdelman, Max Planck Institute for Marine Microbiology, Germany

                *Correspondence: Akihiko Yamagishi, Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan. e-mail: yamagish@ 123456toyaku.ac.jp

                This article was submitted to Frontiers in Extreme Microbiology, a specialty of Frontiers in Microbiology.

                Article
                10.3389/fmicb.2013.00085
                3627986
                23626587
                51455a1e-9697-41d3-b331-247c8f044651
                Copyright © 2013 Kato, Nakawake, Kita, Yamanaka, Utsumi, Okamura, Ishibashi, Ohkuma and Yamagishi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 12 January 2013
                : 27 March 2013
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 35, Pages: 11, Words: 7539
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                bacteria,archaea,16s rrna gene,crustal fluids,deep-sea hydrothermal vent,sub-seafloor biosphere,island-arc,western pacific

                Comments

                Comment on this article