3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Characterization and Phylogenetic Analysis of Lumpy Skin Disease Virus Collected from Outbreaks in Northern Thailand in 2021

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding molecular epidemiology is essential for the improvement of lumpy skin disease (LSD) eradication and control strategies. The objective of this study was to perform a molecular characterization and phylogenetic analysis of lumpy skin disease virus (LSDV) isolated from dairy cows presenting LSD-like clinical signs in northern Thailand. The skin nodules were collected from 26 LSD-suspected cows involved in six outbreaks during the period from July to September of 2021. LSDVs were confirmed from clinical samples using the polymerase chain reaction (PCR). The PCR-positive samples were subsequently amplified and sequenced using a G-protein-coupled chemokine receptor (GPCR) gene for molecular characterization and phylogenetic analyses. All 26 samples were positive for LSDV by PCR. A phylogenetic analysis indicated that the 24 LSDV isolates obtained from cattle in northern Thailand were closely related to other LSDV sequences acquired from Asia (China, Hong Kong, and Vietnam). On the other hand, two LSDV isolates of the cows presenting LSD-like clinical signs after vaccination were clustered along with LSDV Neethling-derived vaccines. The outcomes of this research will be beneficial in developing effective control strategies for LSDV.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

          The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Review: lumpy skin disease: an emerging threat to Europe, the Middle East and Asia.

            Lumpy skin disease (LSD) is an economically devastating emerging viral disease of cattle. Lumpy skin disease is currently endemic in most African countries and has recently spread out of Africa into the Middle East region. In this article, we review the putative mechanisms of spread of LSD into the Middle East and the risks of further spread into Turkey, Europe and Asia. We also review the latest findings on the epidemiology of LSD, its mechanisms of transmission, the potential role of wildlife in its maintenance and spread and the diagnostic tests and control methods currently available. © 2011 Blackwell Verlag GmbH.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Review: Capripoxvirus Diseases: Current Status and Opportunities for Control

              Summary Lumpy skin disease, sheeppox and goatpox are high‐impact diseases of domestic ruminants with a devastating effect on cattle, sheep and goat farming industries in endemic regions. In this article, we review the current geographical distribution, economic impact of an outbreak, epidemiology, transmission and immunity of capripoxvirus. The special focus of the article is to scrutinize the use of currently available vaccines to investigate the resource needs and challenges that will have to be overcome to improve disease control and eradication, and progress on the development of safer and more effective vaccines. In addition, field evaluation of the efficacy of the vaccines and the genomic database available for poxviruses are discussed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Veterinary Sciences
                Veterinary Sciences
                MDPI AG
                2306-7381
                April 2022
                April 18 2022
                : 9
                : 4
                : 194
                Article
                10.3390/vetsci9040194
                35448692
                501c74be-f27a-4288-a352-fc019f60c513
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content459

                Cited by13

                Most referenced authors378