2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high‐throughput sequencing metabarcoding studies

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          • Arbuscular mycorrhizal (AM) fungi are crucial mutualistic symbionts of the majority of plant species, with essential roles in plant nutrient uptake and stress mitigation. The importance of AM fungi in ecosystems contrasts with our limited understanding of the patterns of AM fungal biogeography and the environmental factors that drive those patterns.

          • This article presents a release of a newly developed global AM fungal dataset (GlobalAMFungi database, https://globalamfungi.com) that aims to reduce this knowledge gap. It contains almost 50 million observations of Glomeromycotinian AM fungal amplicon DNA sequences across almost 8500 samples with geographical locations and additional metadata obtained from 100 original studies.

          • The GlobalAMFungi database is built on sequencing data originating from AM fungal taxon barcoding regions in: i) the small subunit rRNA (SSU) gene; ii) the internal transcribed spacer 2 (ITS2) region; and iii) the large subunit rRNA (LSU) gene.

          • The GlobalAMFungi database is an open source and open access initiative that compiles the most comprehensive atlas of AM fungal distribution. It is designed as a permanent effort that will be continuously updated by its creators and through the collaboration of the scientific community. This study also documented applicability of the dataset to better understand ecology of AM fungal taxa.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The SILVA ribosomal RNA gene database project: improved data processing and web-based tools

          SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

            S Altschul (1997)
            The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications

              Abstract UNITE (https://unite.ut.ee/) is a web-based database and sequence management environment for the molecular identification of fungi. It targets the formal fungal barcode—the nuclear ribosomal internal transcribed spacer (ITS) region—and offers all ∼1 000 000 public fungal ITS sequences for reference. These are clustered into ∼459 000 species hypotheses and assigned digital object identifiers (DOIs) to promote unambiguous reference across studies. In-house and web-based third-party sequence curation and annotation have resulted in more than 275 000 improvements to the data over the past 15 years. UNITE serves as a data provider for a range of metabarcoding software pipelines and regularly exchanges data with all major fungal sequence databases and other community resources. Recent improvements include redesigned handling of unclassifiable species hypotheses, integration with the taxonomic backbone of the Global Biodiversity Information Facility, and support for an unlimited number of parallel taxonomic classification systems.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                New Phytologist
                New Phytologist
                Wiley
                0028-646X
                1469-8137
                October 02 2023
                Affiliations
                [1 ] Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 142 20 Prague Czechia
                [2 ] Institute of Botany of the Czech Academy of Sciences Zámek 1 252 43 Průhonice Czechia
                [3 ] Institute of Ecology and Earth Sciences University of Tartu J. Liivi St 2 504 09 Tartu Estonia
                [4 ] Faculty of Science Charles University Albertov 6 128 43 Prague Czechia
                Article
                10.1111/nph.19283
                37781910
                4fdd3eeb-ad6b-4c56-92a8-f2d4d02fc22b
                © 2023

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article