3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mouth-Watering Results: Clinical Need, Current Approaches, and Future Directions for Salivary Gland Regeneration

      ,
      Trends in Molecular Medicine
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found

          Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control.

          Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified, which constrains them to act as short-range cellular signals. The locality of Wnt signaling dictates that stem cells exiting the Wnt signaling domain differentiate, spatially delimiting the niche in certain tissues. In some instances, stem cells may act as or generate their own niche, enabling the self-organization of patterned tissues. In this Review, we discuss the various ways by which Wnt operates in stem cell control and, in doing so, identify an integral program for tissue renewal and regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.

            Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4-dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of salivary gland function by autonomic nerves.

              Oral homeostasis is dependent upon saliva and its content of proteins. Reflex salivary flow occurs at a low 'resting' rate and for short periods of the day more intense taste or chewing stimuli evoke up to ten fold increases in salivation. The secretion of salivary fluid and proteins is controlled by autonomic nerves. All salivary glands are supplied by cholinergic parasympathetic nerves which release acetylcholine that binds to M3 and (to a lesser extent) M1 muscarinic receptors, evoking the secretion of saliva by acinar cells in the endpieces of the salivary gland ductal tree. Most salivary glands also receive a variable innervation from sympathetic nerves which released noradrenaline from which tends to evoke greater release of stored proteins, mostly from acinar cells but also ductal cells. There is some 'cross-talk' between the calcium and cyclic AMP intracellular pathways coupling autonomic stimulation to secretion and salivary protein secretion is augmented during combined stimulation. Other non-adrenergic, non-cholinergic neuropeptides released from autonomic nerves evoke salivary gland secretion and parasympathetically derived vasointestinal peptide, acting through endothelial cell derived nitric oxide, plays a role in the reflex vasodilatation that accompanies secretion. Neuronal type, calcium-activated, soluble nitric oxide within salivary cells appears to play a role in mediating salivary protein secretion in response to autonomimetics. Fluid secretion by salivary glands involves aquaporin 5 and the extent to which the expression of aquaporin 5 on apical acinar cell membranes is upregulated by cholinomimetics remains uncertain. Extended periods of autonomic denervation, liquid diet feeding (reduced reflex stimulation) or duct ligation cause salivary gland atrophy. The latter two are reversible, demonstrating that glands can regenerate provided that the autonomic innervation remains intact. The mechanisms by which nerves integrate with salivary cells during regeneration or during salivary gland development remain to be elucidated.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Trends in Molecular Medicine
                Trends in Molecular Medicine
                Elsevier BV
                14714914
                July 2020
                July 2020
                : 26
                : 7
                : 649-669
                Article
                10.1016/j.molmed.2020.03.009
                32371171
                4b3fa900-e340-40ec-9aa9-406851749635
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article