277
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      JSME: a free molecule editor in JavaScript

      product-review
      1 ,   2 ,
      Journal of Cheminformatics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A molecule editor, i.e. a program facilitating graphical input and interactive editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. Today, when a web browser has become the universal scientific user interface, a tool to edit molecules directly within the web browser is essential. One of the most popular tools for molecular structure input on the web is the JME applet. Since its release nearly 15 years ago, however the web environment has changed and Java applets are facing increasing implementation hurdles due to their maintenance and support requirements, as well as security issues. This prompted us to update the JME editor and port it to a modern Internet programming language - JavaScript.

          Summary

          The actual molecule editing Java code of the JME editor was translated into JavaScript with help of the Google Web Toolkit compiler and a custom library that emulates a subset of the GUI features of the Java runtime environment. In this process, the editor was enhanced by additional functionalities including a substituent menu, copy/paste, drag and drop and undo/redo capabilities and an integrated help. In addition to desktop computers, the editor supports molecule editing on touch devices, including iPhone, iPad and Android phones and tablets. In analogy to JME the new editor is named JSME. This new molecule editor is compact, easy to use and easy to incorporate into web pages.

          Conclusions

          A free molecule editor written in JavaScript was developed and is released under the terms of permissive BSD license. The editor is compatible with JME, has practically the same user interface as well as the web application programming interface. The JSME editor is available for download from the project web page http://peter-ertl.com/jsme/

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular structure input on the web

          Peter Ertl (2010)
          A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential. The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on technologies like JavaScript and Flash, is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Inroads to Predict in Vivo Toxicology—An Introduction to the eTOX Project

            There is a widespread awareness that the wealth of preclinical toxicity data that the pharmaceutical industry has generated in recent decades is not exploited as efficiently as it could be. Enhanced data availability for compound comparison (“read-across”), or for data mining to build predictive tools, should lead to a more efficient drug development process and contribute to the reduction of animal use (3Rs principle). In order to achieve these goals, a consortium approach, grouping numbers of relevant partners, is required. The eTOX (“electronic toxicity”) consortium represents such a project and is a public-private partnership within the framework of the European Innovative Medicines Initiative (IMI). The project aims at the development of in silico prediction systems for organ and in vivo toxicity. The backbone of the project will be a database consisting of preclinical toxicity data for drug compounds or candidates extracted from previously unpublished, legacy reports from thirteen European and European operation-based pharmaceutical companies. The database will be enhanced by incorporation of publically available, high quality toxicology data. Seven academic institutes and five small-to-medium size enterprises (SMEs) contribute with their expertise in data gathering, database curation, data mining, chemoinformatics and predictive systems development. The outcome of the project will be a predictive system contributing to early potential hazard identification and risk assessment during the drug development process. The concept and strategy of the eTOX project is described here, together with current achievements and future deliverables.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Web-based cheminformatics and molecular property prediction tools supporting drug design and development at Novartis.

              Web-based tools offer many advantages for processing chemical information, most notably ease of use and high interactivity. Therefore more and more pharmaceutical companies are using web technology to deliver sophisticated molecular processing tools directly to the desks of their chemists, to assist them in the process of designing and developing new drugs. In this paper, the web-based cheminformatics system developed at Novartis and currently used by more than thousand users is described. The system allows various molecular modeling and molecular processing tasks, including the calculation of molecular and substituent properties, property-based virtual screening, visualization of molecules, bioisosteric design, diversity analysis, and support of combinatorial chemistry. The methodology to calculate various molecular properties relevant to drug design is described, including the prediction of intestinal absorption, blood-brain barrier penetration, efflux, and water solubility. Information about the web technology used is also provided.
                Bookmark

                Author and article information

                Journal
                J Cheminform
                J Cheminform
                Journal of Cheminformatics
                BioMed Central
                1758-2946
                2013
                21 May 2013
                : 5
                : 24
                Affiliations
                [1 ]Molecular Networks GmbH, Henkestrasse 91, Erlangen, D-91052, Germany
                [2 ]Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
                Article
                1758-2946-5-24
                10.1186/1758-2946-5-24
                3662632
                23694746
                4a6f0120-de69-4672-be58-454efb014f13
                Copyright ©2013 Bienfait and Ertl; licensee Chemistry Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 March 2013
                : 16 May 2013
                Categories
                Software

                Chemoinformatics
                Chemoinformatics

                Comments

                Comment on this article