99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The immunopathology of sepsis and potential therapeutic targets

      , , ,
      Nature Reviews Immunology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sepsis — which is caused by a dysregulated host response to infection — is a life-threatening organ dysfunction. This Review describes the recent advances in our understanding of sepsis pathogenesis and discusses strategies for the development of successful therapies.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity.

          Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro-differentiated naïve, tolerized, and trained macrophages. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and we identified pathways functionally implicated in trained immunity. β-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in deoxyribonuclease I hypersensitive sites at cell-type-specific epigenetic loci unveiled differentiation and treatment-specific repertoires. Altogether, we provide a resource to understand the epigenetic changes that underlie innate immunity in humans. Copyright © 2014, American Association for the Advancement of Science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes.

            Immunological memory in vertebrates is often exclusively attributed to T and B cell function. Recently it was proposed that the enhanced and sustained innate immune responses following initial infectious exposure may also afford protection against reinfection. Testing this concept of "trained immunity," we show that mice lacking functional T and B lymphocytes are protected against reinfection with Candida albicans in a monocyte-dependent manner. C. albicans and fungal cell wall β-glucans induced functional reprogramming of monocytes, leading to enhanced cytokine production in vivo and in vitro. The training required the β-glucan receptor dectin-1 and the noncanonical Raf-1 pathway. Monocyte training by β-glucans was associated with stable changes in histone trimethylation at H3K4, which suggests the involvement of epigenetic mechanisms in this phenomenon. The functional reprogramming of monocytes, reminiscent of similar NK cell properties, supports the concept of "trained immunity" and may be employed for the design of improved vaccination strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Benchmarking the incidence and mortality of severe sepsis in the United States.

              In 1992, the first consensus definition of severe sepsis was published. Subsequent epidemiologic estimates were collected using administrative data, but ongoing discrepancies in the definition of severe sepsis produced large differences in estimates. We seek to describe the variations in incidence and mortality of severe sepsis in the United States using four methods of database abstraction. We hypothesized that different methodologies of capturing cases of severe sepsis would result in disparate estimates of incidence and mortality. Using a nationally representative sample, four previously published methods (Angus et al, Martin et al, Dombrovskiy et al, and Wang et al) were used to gather cases of severe sepsis over a 6-year period (2004-2009). In addition, the use of new International Statistical Classification of Diseases, 9th Edition (ICD-9), sepsis codes was compared with previous methods. Annual national incidence and in-hospital mortality of severe sepsis. The average annual incidence varied by as much as 3.5-fold depending on method used and ranged from 894,013 (300/100,000 population) to 3,110,630 (1,031/100,000) using the methods of Dombrovskiy et al and Wang et al, respectively. Average annual increase in the incidence of severe sepsis was similar (13.0% to 13.3%) across all methods. In-hospital mortality ranged from 14.7% to 29.9% using abstraction methods of Wang et al and Dombrovskiy et al. Using all methods, there was a decrease in in-hospital mortality across the 6-year period (35.2% to 25.6% [Dombrovskiy et al] and 17.8% to 12.1% [Wang et al]). Use of ICD-9 sepsis codes more than doubled over the 6-year period (158,722 - 489,632 [995.92 severe sepsis], 131,719 - 303,615 [785.52 septic shock]). There is substantial variability in incidence and mortality of severe sepsis depending on the method of database abstraction used. A uniform, consistent method is needed for use in national registries to facilitate accurate assessment of clinical interventions and outcome comparisons between hospitals and regions.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Nature
                1474-1733
                1474-1741
                April 24 2017
                April 24 2017
                :
                :
                Article
                10.1038/nri.2017.36
                28436424
                4a6b4dd3-f6a6-434a-9c75-b2850a6e82ce
                © 2017
                History

                Comments

                Comment on this article