4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimating the density of a small population of leopards (Panthera pardus) in central Iran using multi-session photographic‐sampling data

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          West Asian drylands host a number of threatened large carnivores, including the leopard ( Panthera pardus) which is limited generally to areas with low primary productivity. While conservation efforts have focused on these areas for several decades, reliable population density estimates are missing for many of them. Spatially explicit capture–recapture (SECR) methodology is a widely accepted population density estimation tool to monitor populations of large carnivores and it incorporates animal movement in the statistical estimation process. We employed multi-session maximum-likelihood SECR modeling to estimate the density of a small population of leopard in a mountainous environment surrounded by deserts in central Iran. During 6724 camera trap nights, we detected 8 and 5 independent leopards in 2012 and 2016 sessions, respectively. The top-performing model produced density estimates of 1.6 (95% CI = 0.9–2.9) and 1.0 (95% CI = 0.6–1.6) independent leopards/100 km 2 in 2012 and 2016, respectively. Both sex and season had substantial effects on spatial scale ( σ), with larger movements recorded for males, and during winter. The estimates from our density estimation exercise represent some of the lowest densities across the leopard global range and strengthen the notion that arid habitats support low densities of the species. These small populations are vulnerable to demographic stochasticity, and monitoring temporal changes in their population density and composition is a critical tool in assisting conservation managers to better understand their population performance.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Spatially explicit maximum likelihood methods for capture-recapture studies.

          Live-trapping capture-recapture studies of animal populations with fixed trap locations inevitably have a spatial component: animals close to traps are more likely to be caught than those far away. This is not addressed in conventional closed-population estimates of abundance and without the spatial component, rigorous estimates of density cannot be obtained. We propose new, flexible capture-recapture models that use the capture locations to estimate animal locations and spatially referenced capture probability. The models are likelihood-based and hence allow use of Akaike's information criterion or other likelihood-based methods of model selection. Density is an explicit parameter, and the evaluation of its dependence on spatial or temporal covariates is therefore straightforward. Additional (nonspatial) variation in capture probability may be modeled as in conventional capture-recapture. The method is tested by simulation, using a model in which capture probability depends only on location relative to traps. Point estimators are found to be unbiased and standard error estimators almost unbiased. The method is used to estimate the density of Red-eyed Vireos (Vireo olivaceus) from mist-netting data from the Patuxent Research Refuge, Maryland, U.S.A. Estimates agree well with those from an existing spatially explicit method based on inverse prediction. A variety of additional spatially explicit models are fitted; these include models with temporal stratification, behavioral response, and heterogeneous animal home ranges.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Density estimation in live-trapping studies

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessing tiger population dynamics using photographic capture-recapture sampling.

              Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
                Bookmark

                Author and article information

                Journal
                Mammalian Biology
                Mamm Biol
                Springer Science and Business Media LLC
                1616-5047
                1618-1476
                June 2021
                January 08 2021
                June 2021
                : 101
                : 3
                : 363-371
                Article
                10.1007/s42991-020-00096-w
                4a5a1a63-5556-459b-9fef-cc7813a44f5c
                © 2021

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article