6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review highlights the recent impressive progress in vacancy engineering of photocatalysts and discusses the outlook on the future development of vacancy-enhanced photocatalysis.

          Abstract

          Semiconductor vacancy engineering has remained a prominent growing field over the past several decades. Modulating electronic structures and surface properties has sparked considerable interest in vacancy-modified photocatalysts. Given vacancy-mediated photocatalysis has only been developed for a relatively short period, significant advance has been made in enhancing light absorption over the full solar spectrum, the efficiency of charge transfer and separation and surface reaction kinetics. This review seeks to highlight the recent impressive progress in vacancy-enhanced photocatalysis. First, we summarize the crafting and characterization of vacancies after defining the classification of vacancies. Second, current developments of semiconductor vacancy engineering in several photocatalysts ( i.e., metal oxides, hydroxides, sulfides, Sillén phase related bismuth-containing materials and g-C 3N 4) are emphasized, focusing on the mechanism of vacancies in regulating the photocatalytic performance. Finally, prospects and challenges regarding vacancy engineering of photocatalytic materials are concluded.

          Related collections

          Most cited references240

          • Record: found
          • Abstract: not found
          • Article: not found

          Electrochemical Photolysis of Water at a Semiconductor Electrode

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?

            As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and "earth-abundant" nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The construction and characteristics of each classification of the heterojunction system will be critically reviewed, namely metal-g-C3N4, semiconductor-g-C3N4, isotype g-C3N4/g-C3N4, graphitic carbon-g-C3N4, conducting polymer-g-C3N4, sensitizer-g-C3N4, and multicomponent heterojunctions. The band structures, electronic properties, optical absorption, and interfacial charge transfer of g-C3N4-based heterostructured nanohybrids will also be theoretically discussed based on the first-principles density functional theory (DFT) calculations to provide insightful outlooks on the charge carrier dynamics. Apart from that, the advancement of the versatile photoredox applications toward artificial photosynthesis (water splitting and photofixation of CO2), environmental decontamination, and bacteria disinfection will be presented in detail. Last but not least, this comprehensive review will conclude with a summary and some invigorating perspectives on the challenges and future directions at the forefront of this research platform. It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heterogeneous photocatalyst materials for water splitting.

              This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent. Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade. The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials. Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references).
                Bookmark

                Author and article information

                Contributors
                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                August 17 2021
                2021
                : 9
                : 32
                : 17143-17172
                Affiliations
                [1 ]School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
                [2 ]State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
                [3 ]School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
                [4 ]State Key Laboratory of Optoelectronic Materials and Technologies, The Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
                Article
                10.1039/D1TA03895H
                49e6c2b8-b821-4c03-8743-2c7f05879cfe
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article