47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Archaeal dominance in the mesopelagic zone of the Pacific Ocean.

            The ocean's interior is Earth's largest biome. Recently, cultivation-independent ribosomal RNA gene surveys have indicated a potential importance for archaea in the subsurface ocean. But quantitative data on the abundance of specific microbial groups in the deep sea are lacking. Here we report a year-long study of the abundance of two specific archaeal groups (pelagic euryarchaeota and pelagic crenarchaeota) in one of the ocean's largest habitats. Monthly sampling was conducted throughout the water column (surface to 4,750 m) at the Hawai'i Ocean Time-series station. Below the euphotic zone (> 150 m), pelagic crenarchaeota comprised a large fraction of total marine picoplankton, equivalent in cell numbers to bacteria at depths greater than 1,000 m. The fraction of crenarchaeota increased with depth, reaching 39% of total DNA-containing picoplankton detected. The average sum of archaea plus bacteria detected by rRNA-targeted fluorescent probes ranged from 63 to 90% of total cell numbers at all depths throughout our survey. The high proportion of cells containing significant amounts of rRNA suggests that most pelagic deep-sea microorganisms are metabolically active. Furthermore, our results suggest that the global oceans harbour approximately 1.3 x 10(28) archaeal cells, and 3.1 x 10(28) bacterial cells. Our data suggest that pelagic crenarchaeota represent one of the ocean's single most abundant cell types.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?

                Bookmark

                Author and article information

                Journal
                Geochimica et Cosmochimica Acta
                Geochimica et Cosmochimica Acta
                Elsevier BV
                00167037
                August 2010
                August 2010
                : 74
                : 16
                : 4639-4654
                Article
                10.1016/j.gca.2010.05.027
                494fc675-7cf3-49db-8348-7d64f1156bc2
                © 2010

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article